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EVALUATION
The objective of this program was to develop techniques
and algorithms to extend highly reliable speaker-dependent isolated
word recognition to speaker-dependent continuous word recognition
and study the methodology for speaker-independent continuous

speech recognition.

A hardware/software implementation of a real-time continuous
speech recognition system was fabricated by Texas Instruments (TI).
This system was extensively tested and modified to incorporate the
results of the tests and a continual upgrade of the system took
place over the life of the contract. TI based their real-time
speech recognition system on techniques they developed for automatic
speaker verification and the Total Voice Verification program

which used a restricted connected digit capability.

The speaker-independent, connected digit performance resulted
in 95.3 percent recognition accuracy on a data set consisting of

10 six-digit sequences from 106 speakers (64 males and 42 females).

The capability that TI has developed under subject program
has been installed at RADC for further test and evaluation. The
RADC tests shall attempt to establish the effectiveness of the
current state-of-the-art connected speech system as to its

applicability to operational military requirements.
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SECTION |
INTRODUCTION

This final report covers the research done on a limited-vocabulary continuous word
recognition study undertaken by Texas Instruments. This effort was divided into two primary
areas of investigation: extension of speaker-dependent isolated word recognition to speaker-
dependent continuous word recognition, and the study of speaker-independent continuous speech
recognition.

Speaker-dependent isolated word recognition is currently being used for applications such
as map data entry. Extension to speaker-dependent continuous word recognition is a more
natural one for the time normalization techniques used at Texas Instruments (described in
Section II) than the type that depends on locating endpoints of words, which may not even exist
[e.g., when phonemes are shared (/s/ in six-seven) between words in continuous speech].
Speaker-dependent word recognition uses speaker-dependent reference patterns obtained in a
single enrollment session. A method of automatic enrollment and supervised updating to
accommodate intersession variations and context dependencies were investigated during this
study.

For many years, the approach to the problem of speaker-independent recognition of
continuous speech has been a heuristically directed search for the correct features and weightings
for the hierarchical classification of a set of symbol strings, mapping ultimately into an
English-language transcription. The emphasis has been on getting out of the acoustic and into the
phonemic domain as quickly as possible because of the huge memory requirements for storing
acoustic data for large vocabularies. Since the heuristics were often based on the researcher’s
judgment, derived from often insufficient data, the consequent mislabelings had to be corrected
with progressively more complex classification algorithms. Design and testing using small data
bases, along with the use of phonemic representations of speech have resulted not only from
memory limitations but also from the lack of techniques in speech for dealing with very large
amounts of data. Within the last few years, however, work on such techniques has begun to
appear. During the Total Voice Speaker Verification study,! performed by Texas Instruments
under RADC sponsorship, a clustering algorithm was developed and used to produce a set of
speaker-independent reference patterns for use in speaker-independent, connected-digit
recognition. The current study then concentrated on two tasks for speaker-independent,
continuous-speech recognition. One task was to determine the performance that could be
achieved on speaker-independent, connected-digit recognition using the previously developed
reference patterns by making improvements to the word recognition algorithm. The other task
was to investigate improvements that could be made to the clustering algorithm for the purpose
of finding better partitions of the design data set.

Section II of this report reviews the speech technology used at Texas Instruments and
covers an improved directed graph searching algorithm developed during this contract. Section 111
covers an automated enrollment method for speaker-dependent, connected-word recognition and
the role of reference-pattern updating. Section IV describes the application of clustering to
speaker-independent reference-pattern generation and covers the algorithm extensions developed

'R.L. Davis, B.M. Hydrick, and G.R. Doddington, “Total Voice Speaker Verification,” Rome Air Development
Center Technical Report, RADC-TR-78-260, January 1978.
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during this contract. Section V covers several general-purpose speech-processing capabilities that
center on the use of direct speech input/output (I/O) to a fast array processor. The experimental
results for both the extensive testing performed for speaker-independent, connected-digit recogni-
tion and the more limited testing done for speaker-dependent, continuous-speech recognition are
covered in Section VI. Conclusions and recommendations are made in Section VII.




SECTION II
CONTINUOUS SPEECH RECOGNITION

During the relatively short history of continuous speech recognition work, the
classification schemes have used a feature abstraction process from the speech waveform followed
by a hierarchical classifier. The level of abstraction varied from features of the waveform itself to
symbol representations (phonemes) requiring highly sophisticated classification techniques in
order to compensate for segmentation and labeling errors. The classification complexity generally
was proportional to the level of abstraction. Martin? shows a tree (Figure 1) of feature
abstraction levels.

The usual argument for using a symbol is that it offers a more compact representation of
words and, hence, growth in the memory requirement is not so dramatic with increase in
vocabulary size. However, as Reddy? points out, good signal-to-symbol transformation techniques
currently do not exist, causing size increases in the lexicons and the algorithms, not only to
account for context, dialect, and idolect variations, but also to account for mislabeled acoustic
events.

Therefore, reference-pattern matching in the signal domain has the advantage of not having
to accommodate feature abstraction errors. Three crucial problems are involved, however:
selection of the speech representation, time normalization of the speech signal for matching with
reference patterns, and selection of the reference patterns themselves. The first two of these
topics are discussed in the remainder of this section and the reference-pattern selection is the
subject of the more extended discussions in Sections [ and [V.

A. SPEECH REPRESENTATION

The specific speech representation used in this study was the output of a 16-channel
digital filter bank preceded by a first-order differencing network (for preemphasis). Each of the
bandpass filters is a two-section, cascaded, second-order Bessel filter followed by a rectifier and a
lowpass filter sampled every 10 milliseconds (ms). Center frequencies and bandwidths for the 16
filters are given in Table 1.

An important consideration is the choice of wide-bandwidth filters that locate spectral
peaks but that avoid resolving the voice fundamental and its harmonics. Note that the center
frequencies for filters 14 through 16 lie in the part of the spectrum primarily occupied by
energy only during fricatives. The exception is the third formant for the vowel /i/ for males and
for all the front vowels for females. Since no precise resolution of the frequency location is
possible with the wide-bandwidth filters, the only interest is the presence or absence of a third
formant (in which case other formants would also exist in lower filters) or the presence or absence
of energy anywhere in the frequency band of the top three filters without lower frequency energies.
In order to compact the filter bank representation, the top three filters were added into one
value, without averaging because of the depressed amplitudes, yielding a 14-element vector to
represent the speech spectrum:

2T.B. Martin, “Acoustic Recognition of a Limited Vocabulary in Continuous Speech,” Ph.D. Dissertation,
University of Pennsylvania, 1970.

*D.R." Reddy, “Speech Recognition by Machine: A Review,” Proceedings of the IEEE, 64:501-531,
April 1976.
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This 14-element vector is regressed (Appendix A) using a sine and a cosine basis function to
eliminate gross aspects of the spectrum and to flatten the spectrum. The two regression
coefficients, ¢, and c,, along with a measure of the energy in filters 2 through 13 (vowel
energy), are concatenated to the 14 regressed filter outputs. All elements except the energy are
then normalized and quantized to one of eight equiprobable values, resulting in a speech
representation such as that shown in Figure 2 for the word “seven.” The form shown in Figure 2
is used throughout the remainder of this report. The values of the normalized, quantized 35 and
the two regression coefficients are indicated by the density of the printed symbols according to
the following:

Value: 0 1 26 7
Symbol: blank . R B
At this point the energy is not quantized: however, it is always used relative to other energies

and the relative value is then quantized. Further detail of the speech representation can be found
in the Total Voice Speaker Verification study final report.!

TABLE 1. CHARACTERISTICS OF 16-CHANNEL FILTER BANK

Center Frequency Bandwidth
Filter (Hz) (Hz, at —6 dB)
1 280 250
2 395 280
3 525 310
4 630 340
S 750 360
6 900 360
7 1080 360
8 1265 365
9 1480 365
10 1725 365
11 1985 365
12 2285 360
13 2640 365
14 3150 625
15 3720 635
16 4235 615

9
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Figure 2. Quantized Spectral Speech Representation

B. TIME NORMALIZATION

One of the basic problems in speech processing is time alignment of the speech waveform
with respect to a reference. For example, in the two spectrograms in Figure 3 for the word
“seven,” the time differences between corresponding As (which denote phonemic boundaries) are
obvious.

Early work used linear time normalization of two patterns between endpoints of words,
and although this method improved recognition performance, it suffered from an inability to
deal with the noniinear fluctuations between endpoints and to locate endpoints in continuous
speech reliably.

Two distinct approaches developed during the late 1960s and early 1970s. One approach
(most of the ARPA sponsored work: Reddy?) was based on translating a string of input features
into a sequence of phonemic labels, a procedure dependent on accurate segmentaiion between
phonemes. Segmentation and labeling errors were then repaired by more sophisticated subsequent
processing using syntax, semantics, etc.

The other method approached the problem by a nonlinear warping of the time axis of a
feature waveform of the input speech to obtain maximum coincidence with a reference
waveform. This approach was used by both Doddington* and Sakoe and Chiba;® however, the
latter’s approach could be more easily represented in a form amenable to the use of dvnamic
programming, useful in easing the computation burden. This dynamic programming approach has

*G.R. Doddington, “A Method of Speaker Verification,” Ph.D. Dissertation (Thesis), University of
Wisconsin, 1970.

SH. Sakoe and S. Chiba, “A Dynamic Programming Approach to Continuous Speech Recognition,”
Proceedings of the 7th International Congress on Acoustics, August 1971,
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been used by Velichko and Zagoruiko,® Itakura,” White and Neely,® and Sakoe and Chiba® in
isolated word recognition. Extension to continuous-word recognition has been done by Lowerre!?
on the HARPY speech recognition system (also described briefly by White!!), by Porter,'? and by
Nippon Electric Company in their DP-100 Connected Speech Recognition System.

The technique used at Texas Instruments is an amalgamation of these two methods and
was first used by Doddington'® in 1973. In this method, potential acoustic boundaries
(reference points) are first located in the input waveform. Reference points are combined into
optimal sequences for words in the vocabulary using a dynamic programming routine that uses a
measure of how reliably the reference points were located and that accounts for the deviations
from expected time differences between reference points.

After sequences of potential reference points have been identified, the input waveforms are
interpolated linearly between reference points to form a time normalized representation of the
utterance. The relationship to the Sakoe/Chiba approach can be seen in Figure 4. Essentially,
only those points along the path of the time warp that represent acoustic boundaries are found
(the o's in Figure 4), and the linear interpolation is then performed between these reference
points. A piecewise linear, time-normalized, acoustic representation of the word (a “‘recognition
pattern™) is thus formed. A sample of the spectral data portion of a recognition pattern being
extracted from input speech spectra is shown in Figure 5.

As an example of the choice of reference-point locations, the reference points (As) for the
digits are shown in Table 2 for the phonetic transcriptions of the general American dialect
pronunciations for the digits as found in Kenyon and Knott.'* These locations were chosen at
points that would exhibit large spectral changes. The actual rules used in extracting recognition
patterns for the 10 digits are also specified in table 2, where:

(1) Initial negative numbers indicate the columns for extrapolation before the first
reference point

(2) Intermediate numbers in parentheses indicate the number of columns for
interpolation between reference points

(3) The remaining numbers indicate columns for extrapolation after the last reference
point.

V.M. Velichko and N.G. Zagoruiko, “Automatic Recognition of 200 Words,” International Journal
Man-Machine Studies, 2:223, June 1970.

"F. Itakura, “Minimum Prediction Residual Principle Applied to Speech Recognition,” JEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-23:67—-72, February 1975.

3G.M. White and R.B. Neely, “Speech Recognition Experiments With Linear Prediction, Bandpass Filtering,
and Dynamic Programming,” /EEE Transactions on Acoustics, Speech and Signal Processing, ASSP-24:183-188,
April 1976.

%H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,”
IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26:43-49, February 1978.

9B.T. Lowerre, “The HARPY Speech Recognition System,” Ph.D. Dissertation (Thesis), Carnegie-Mellon
University, 1976.

""G.M. White, “Continuous Speech Recognition: Dynamic Programming, Knowledge Nets and HARPY,”
Paper 28-2, 1978 WESCON Professional Program, September 1978.

2] E. Porter, “LISTEN: A System for Recognizing Connected Speech Over Small, Fixed Vocabularies in Real
Time,” Naval Training Equipment Center Technical Report, NAVTRAEQUIPCEN 77-C-0096-1, April 1978.

BG.R. Doddington, “Speaker Verification,” Rome Air Development Center Technical Report, RADC-TR-
74-179, April 1974.

143.8. Kenyon and T.A. Knott, A Pronouncing Dictionary of American English, G. & C. Merriam Company
(Springfield, Massachusetts, 1953).
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Figure 5. Example of Recognition Pattern Formation

At this point, the speech representation is still in the acoustic domain, differing from
those!®!'> who transform their time-warped segments into phonemic labels with associated
transition probabilities between labeled states. The advantage of remaining in the acoustic
domain is that it avoids an intermediate classification that would introduce errors and obviates
the need to find every phonetic boundary, which is helpful when such boundaries are difficult to
find.

ISE. Jelinek, “Continuous Speech Recognition by Statistical Methods,” Proceedings of the IEEE, 64:532-556,
April 1976.
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TABLE 2. RECOGNITION PATTERN FORMAT DEFINITIONS
FOR THE DIGITS

z Ir 0 f al v
A A A
4, -2 (4) @) 4,-2 (6) 2,4
w A n s | k s
A A A
4,~2  (6) 2,4 4,-2 4 (@ 2,4
t u sl € AN 3 Al
A A A
4,-2 (2) (6 4 2@ @ 2.4
(O e t
A
4, -2 (6) 6) 2,4
f_ o .« n al n
A A A
4, -2 (6) 2 4, -2 (6) 2,4

C. REFERENCE-POINT LOCATION

A presupposition of this piecewise, linear, time-normalization technique is extremely
accurate reference-point location. One approach would be vocabulary-independent, locating
changes in features such as voicing, energy, or spectrum between adjacent time samples. This is a
reliable, precise method for use in speaker-dependent recognizers; however, sometimes expected
acoustic segmentation points are missed in speaker-independent recognition.

A more robust approach is to use a vocabulary-dependent approach (similar to the
“transeme’ approach used at IBM'®), matching a feature vector (called a “scanning pattern”)
extracted from the input speech waveform to reference scanning patterns, or templates. Figure 6
shows a scanning pattern being extracted from the spectral input. Matching is performed by
computing a distance between the input and all reference patterns for every frame (10 ms in this
study). Minima in this distance function are locations of potential acoustic boundaries (reference
points).

More specifically, the scanning pattern ‘formed at time t; consists of: (1) the spectral data,
regression coefficients, and energy for the five time samples from t,_, through t;,, and (2) the
difference between the data for all adjacent pairs of time samples. The energy used in the
scanning pattern is the energy for each of the five columns of data, normalized by the sum over
all five columns and quantized to 4 bits. Figure 6 illustrates the formation of a scanning pattern
from preprocessed (regressed, normalized, quantized) speech data. The only purpose of the
difference data is to weight more heavily rapid changes of the feature vectors with respect to
time. Since these data are derived from the standard data portion of the scanning pattern,
subsequent illustrations of scanning patterns in this report will not show the difference data,

even though it is, in fact, part of the actual pattern.

'N.R. Dixon and H.F. Silverman, “The 1976 Modular Acoustic Processor (MAP),” IEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-25:367-379, October 1977.
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In order to determine where reference points occur in the input speech, the input data are
compared with reference data. This procedure (called scanning) is done by formatting scanning
patterns from the input speech at each time sample t;, comparing these with predetermined
reference scanning patterns T, and obtaining a measure of squared difference between the two,
called the scanning error:

164
exj = 1% T = -Z- (x; — rig)? (1)
i=1

The final error associated with each reference point is the minimum error of all comparisons
with patterns representing that reference point.

Using the scanning errors as a function of time, an error function is thus generated for
each type of reference scanning pattern using the minimum scanning error for each pattern type
for each time sample. (Multiple reference scanning patterns may be allowed for each reference
point of each word.) Each function is monitored for dips of sufficient magnitude to be
considered as potential locations of the corresponding reference points in the input data. These
dips are called valley points when the ratio of the scanning error following the dip to the
scanning error at the dip itself is greater than or equal to a specified peak-to-valley ratio (PVR),
typically 1.1 to 1.3, and the magnitude of the scanning error for the valley point is less than or
equal to a threshold, typically 600 to 1,200. The occurrence of a peak (verified when the ratio
of the scanning error following the peak to the scanning error at the peak is less than the
reciprocal of the PVR) is required before another valley point can be found. The valley-finding
procedure is shown in Figure 7.

D. WORD HYPOTHESIZING AND TESTING

Once these valleys in the scanning error (potential reference points) have been found, the
next task is to fit them together to form word hypotheses. A sequence of time-ordered
reference-point hypotheses for a word must exist, and the time distance between each pair of
reference points must satisfy word-specific minimum/maximum restrictions. The error determined
for each reference point pair is weighted by deviations from the expected distance between the
two points and the scanning error at each hypothesized reference point. The weighted error for
reference points i and j is:

(e; + offset) (e; + offset) dt;; - dt;; \?
- |+B

W, . i ¥ STIRR e
L 1024 at;;
where
: 2)
dt,; =¢ — ¢ g=2
dtj = expected dt;; atmin =4
at;j = max (ali,j atmm) offset = 100
€, € = scanning error for reference points i, |
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If the hypothesized word sequence error (SQ), which is the sum of the Ey;; for all reference
point pairs in the word, is less than a predetermined word-specific threshold, then a word has
been hypothesized.

To test this hypothesized word, the time-normalized recognition pattern anchored at the
corresponding hypothesized reference points is compared to time-normalized reference
recognition pattern(s) for the hypothesized word, using the squared Euclidian distance. This
distance (or the minimum distance, in the case of multiple reference patterns) is the recognition
error (TE), which is used along with the sequence error (SQ) in computing a total normalized
error (NE) for the word “k’ as given below:

TEk /No. of columns in word k SQg S

NE, = e R

normalizing constant for word k 10 (NPP)
where NPP is the number of reference-point pairs used in computing SQ,. If the NE for the
hypotheiszed word is above a predefined threshold or if the average energy across the recognition
pattern is less than a threshold, the word is discarded. Otherwise, it is placed into a table of
hypothesized words, along with the SQ, TE, NE, average energy, reference-point times, and
scanning errors for that word. Table 3 is an example table of hypothesized words for a sequence
of six digits spoken continuously. Note the existence of the 35 superfluous words in this case.
The optimal searching of this table (or directed graph) is described in the next subsection.

E. AN EFFICIENT TREE-SEARCHING ALGORITHM

Once the current speech segment has
been completed, the sorted table of hypothe-
sized words must be searched to find the
sequence having the minimum error. Note that
this corresponds to finding the best path
through a directed graph, such as the simple
one shown in Figure 8, taken from Porter.!?
The correspondence to the directed graph can
be seen most readily from a specific example.
Table 4 shows the table of hypothesized words
(digits, in this case) sorted according to the
time (in centiseconds) of the final reference
points. Each entry in this table can point back
in time to all previous digits with earlier final
reference-point times (less than the initial
reference-point time of the entry being
considered). The allowable range of back-
pointers can be limited by requiring that the
time difference between the first reference
point of each word and the last reference point
of preceding words lie between a specified,
minimum and maximum.

Clearly, the exhaustive search time for

traversing all possible paths increases rapidly.
Figure 8. Example of Directed Graph
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b Sorted Time of Time of
Table First Last
Index Ref. Pt. Ref. Pt.
Best Sequence:
41 439 469
40 439 469
39 439 464
3 38 415 454
- 37 439 454
36 415 436
35 394 435
34 417 435
33 396 430
32 415 430
31 409 430
30 401 423
29 405 423
28 409 423
27 404 423
26 394 422
25 401 422
24 411 422
23 374 413
22 373 412
21 387 400
20 369 400
19 374 399
18 374 398
17 376 394
16 373 392
15 374 392
14 331 362
13 331 359
12 342 359
11 325 359
i 10 332 358
9 332 S5
8 331 35§
7 325§ 353
6 343 351
S 291 313
4 255 974
3 250 271
2 248 271
] 250 268
|
: ” N e R

TABLE 4. SAMPLE OF TABLE OF BACKPOINTERS FOR BEST WORD
SEQUENCES IN SORTED TABLE OF HYPOTHESIZED WORD

Adjusted
Normalized
Error

80
69
59
112
99
103
106
108
96
99
73
98
113
58
90
88
90
82
85
95
64
67
111
70
96
47
59
74
64
78
54
82
74
72
63
96
51
53
99
83
91

(o)}
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16

16
16
16
16
16
16
5
16
16
16
16
16
16
16
16

3
16

(o)}

_—e——— B A NN N Ny N D iy

Backpointer Lists for

Sequences of Length
4

3
16 16
16 16
16 16
16 16
16 16
16 16
16 16
< 11
16 16
16 16
16 16
16 16
16 16
16 16
16 16
16 16
5 11
16 16
16 16
5 11
S 11
S 11
5 11
5 11
5 11
5 1]
5 11
S5 11
5 1
5 -1
S 1
5 1
5 —1
S 1
5 l
S -1
S ~1
1 1
1 1
1 -1
1 !
1 1
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16
16
16
16
16
-1
16
16
16
16
16
16
16
16
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16
16
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Syntactic constraints, such as those used in the total voice speaker verification study, can
sometimes aid the efficiency of sequence finding, depending on whether the constraints apply
locally to word pairs or more globally to the utterance as a whole. If syntactic constraints have
been imposed in order to increase sequence recognition performance, such as in the total voice
application, these constraints can be incorporated into the tree-searching algorithm to eliminate
searching branches that are not syntactically correct.

An even greater potential saving may be obtained by saving optimal subsequences to avoid
repetitious searching of the same path. However, this technique is not acceptable for sequences
that are syntactically constrained since the saved optimal subsequence may not, in|fact, satisfy
the constraints when those constraints are applied to the entire sequence. In Other words, the
“correct” sequence (satisfying the syntactic constraints) may in fact not be the “best™ (lowest
error) sequence. Since the saving of optimal subsequences only finds one best sequence of a
given length, this method is not appropriate to syntactically constrained word sequences.

For unconstrained sequences, however, this technique of saving optimal subsequences can
shorten the exhaustive search time to be proportional only to the number of table entries
preceding a table entry. As an example, Table 4 gives the resulting subsequence backpointers for
the sorted table of hypothesized digits for the six-digit sequence in Table 3. These backpointer
lists are constructed from the bottom up, according to the algorithm shown in Figure 9.
Essentially, the backpointer for sorted table index i, sequence length k, points to the sorted table
index j (j <i) that has the minimum error for a subsequence of length (k — 1) for all j satisfying
the relation:

Aty < (tNt8 _ gfinaly  Ap (4)

min 1

where At ;=3 csand At = 120 cs were used in this study.

As each new entry in the list of backpointers is constructed, it is compared to the best
(lowest total error) subsequence of the same length. If the newer entry has a lower error, this
error replaces the best error, and the pointer to the best sequence of that length is changed to
point to the sorted table entry currently under consideration. After the final sorted table index
has been completed, the array of pointers to the subsequences having the lowest error contains
the optimal results of the search. If the length of the sequence has been constrained, all that is
necessary is to select the backpointer for the specified length sequence. If not, the second half of
the algorithm shown in Figure 9 is used to determine the best sequence out of those specified by
the array of pointers to the best sequence.

Although the algorithm described in this subsection was developed as a natural extension
to existing sequence finders that did not save optimal subsequences, reference should be made to
the work of others on this problem. Most widely published is the work of Jelinek et al. at
IBM.!15:17,18 The [BM work was predicated on a phonemic representation of the recognized
speech. The descriptions were in terms of probabilistic finite state machines where the recognized
phonemes are outputs of state-to-state transitions, with all state transitions having associated
a priori probabilities.

'7F. Jelinek, L.R. Bahl, and R.L. Mercer, “Design of a Linguistic Statistical Decoder for the Recognition of
Continuous Speech,” IEEE Transactions on Information Theory, 1T-21:250-256, May 1975.

"8L.R. Bahl and F. Jelinek, “Decoding for Channels With Insertions, Deletions, and Substitutions With
Applications to Speech Recognition,” IEEE Transactions on Information Theory, 1T-21:404-411, July 1975.
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ENTER WITH TABLE OF
HYPOTHESIZED WORDS WITH
NMAX ENTRIES

CALCULATE MIN SUBSEQUENCE ERROR
FOR WORD (N) FOR ALL LENGTH SuB-
SEQUENCES FROM K= 2 TO KMAX AS
ERROR FOR WORD (N) PLUS MIN ERROR
FOR SUBSEQUENCE OF PRIOR WORDS OF
LENGTH K-1; SAVE SUBSEQUENCE
ERROR AND BACKLOINTER TO MIN
ERROR SUBSEQUENCE FOR ALL K'S

4

4

IF
Q)]

)

ERROR FOR LENGTH K SEQUENCE
€ ERROR FOR LENGTH KBEST
SEQUENCE PLUS 'K-KBEST) TIMES
BETA (0 <BETA < 1) TIMES MAX
SINGLE-WORD ERROR, AND
AVERAGE ERROR FOR ALL WORDS
IN LONGER SEQUENCE THAT
OVERLAP WORDS IN SHORTER
SEQUENCE < ERROR FOR WORD IN
SHORTER SEQUENCE

FOR ALL WORDS IN SHORTER
SEQUENCE THAT ARE OVERLAPPED,
THEN KBEST =K

YES

FOR ALL K'S FROM K = 2 TO KMAX,

IF MIN ERROR FOR LENGTH K
SUBSEQUENCE FOR WORD (N) IS LESS
THAN LOWEST MIN ERROR FOR

LENGTH K SEQUENCE FOR ALL PRIOR
WORDS, REPLACE LATTER BY FORMER
AND SAVE BACKPINTER AND MIN ERROR

NO WAS K

YES

N £ NMAX

KBEST = I
K =2

I

NOTE:

FINAL REFERENCE POINT OF LAST WORD OF
SUBSEQUENCE MUST BE IN RANGE (MINSEP,
MAXSEP) AWAY FROM FIRST REFERENCE
POINT OF WORD (N)

FIXED A PRIOR!

WAS
SEQUENCE
OF THIS
LENGTH
FOUND

‘ KBEST =0

r KBEST = A PRIORI K j

OUTPUT SEQUENCE
OF LENGTH KBEST

Figure 9. Flow Chart for Efficient Tree-Searching Algorithm
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Much closer to the work of this subsection is that of Porter,'? whose MINT algorithm is
used to find the highest probability path through a directed graph of hypothesized words, such
as that shown in Figure 8. The nodes (rather than the transitions, as in the IBM work) are each
associated with a hypothesized word and the edges represent backpointers to all allowable
predecessors. The solution to the real-time processing is almost the same as that described here;
each node need be processed only once, rather than each sequence once, by saving backpointers
to the optimal subsequence. The only difference is that, in the present study, N optimal
subsequences are saved (N is the maximum allowable length sequence), whereas just one
backpointer is saved by Porter. Subsequent postprocessing in the present study then selects
- which of the final N sequences is the best.

The interested reader is referred to Porter'? for an extended discussion of the probabilistic
basis for this procedure.

F. OVERALL WORD-RECOGNITION ALGORITHM

Word recognition at Texas Instruments is currently based on the piecewise-linear
time-normalization technique (Subsection IL.LB) of finding potential acoustic boundaries
(reference points) and fitting sequences of reference points together to form hypothesized words.
Time-normalized spectral patterns, formatted for the hypothesized words, are then compared to
reference patterns (for either speaker-independent or speaker-dependent recognition of either
continuous or discrete speech). If the comparison is a good enough match, the time of the first
and last reference points and a total normalized error (distance between the input and reference)
for the word, along with the label for the word, are stored in a table of hypothesized words.

After the utterance has been completed, the table is sorted by time of occurrence of the
final reference point and is then used by the tree-searching algorithm described in the previous
subsection to find the best sequence of words. A summary flow chart for the word recognition
programs investigated during this contract is shown in Figure 10.

Three specific computer programs were generated during this study:

DIGREC, for speaker-independent recognition of connected digits using only the
TI 980 minicomputer

DIGRCT, for speaker-independent recognition of connected digits using the AP 120B
array processor for filtering and preprocessing

RTENR, for speaker-dependent word recognition with automatic enrollment.

Note that for DIGREC, sampling is stopped during the sequence finding that is done after the
complete utterance has been input.

The primary differences between RTENR and both DIGREC and DIGRCT is the source
for the reference scanning and recognition patterns. The reference patterns for DIGREC and
DIGRCT were derived from a clustering procedure applied to a design data set collected,
digitized and hand-edited off-line before use by the test subjects. The reference patterns for
RTENR, however, were derived from on-line enrollment of all the vocabulary words by each
subject using the system. These were speaker-specific reference patterns. Both procedures are
described in more detail in Sections Il and IV.
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ENTER o————® (FOR DIGREC)

START SAMPLING

PROCESS NEXT INPUT
SAMPLE THAT HAS BEEN
FILTERED, REGRESSED,
AND NORMALIZED

SPEECH
STARTED

SPEECH
ENDED

YES

FORMAT SCANNING
PATTERN FROM INPUT

LOOK FOR SCANNING
ERROR VALLEYS
(POTENTIAL REF PTS)
BY COMPARING INPUT
SCANNING PATTERN

WITH REFERENCE
SCANNING PATTERNS

ANY
VALLEYS

—s @ (FOR DIGRCT AND RTENR)

-

*

—

____.._i.__.__l

___%_.___1

STOP SAMPLING

FIND BEST WORD
SEQUENCE FOR EACH
ALLOWABLE LENGTH
SEQUENCE

YES

LENGTH
PREDETERMINED

CHOOSE BEST SEQUENCE
FROM AMONG BEST
OF EACH LENGTH

OUTPUT WORD
SEQUENCE

TERMINATE
RECOGNITION

YES

END

Figure 10. Word Recognition Algorithm Flow Chart (Sheet 1 of 2)




TRY TO HYPOTHESIZE
WORDS FROM SEQUENCES
OF VALLEY POINTS

HAVE
ALL WORDS

FOUND BEEN
PROCESSED

YES

FORMAT TIME-NORMALIZED
RECOGNITION PATTERN
FROM INPUT

ENERGY
LARGE
ENOUGH

COMPARE INPUT RECOGNITION
PATTERN WITH REFERENCE
RECOGNITION PATTERN (S)

COMPARISON
ERROR
€ THRESHOLD

SAVE WORD IN TABLE
OF HYPOTHESIZED
WORDS

Figure 10. Word Recognition Algorithm Flow Chart (Sheet 2 of 2)
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SECTION (11
SPEAKER-DEPENDENT WORD RECOGNITION

A. INTRODUCTION

The speech-processing algorithm described in Section Il provides the framework for both
speaker-dependent and speaker-independent word-recognition tasks. The algorithm is made
) specific to the given task through definition of the reference scanning and recognition patterns.
o The speaker-dependent task is accomplished through definition of a single set of reference
scanning patterns for each vocabulary word for each speaker. In contrast, multiple scanning
patterns are defined for each word in the speaker-independent word-recognition task (discussed
in Section IV).

The reference patterns for the speaker-dependent word-recognition task are obtained in a
single enrollment session where each word in the vocabulary is spoken in isolation. Intersession
variations and contextual variations in continuous speech are accounted for by a method of
supervised updating.

The remainder of this section discusses the definition of the reference scanning and
recognition patterns, the method of supervised updating, and the application of the algorithm to
continuous speech.

B. ENROLLMENT

Enrollment in the speaker-dependent word-recognition task defines the speaker-specific
reference patterns for each word in the vocabulary. A total of 20 words per speaker is allowed.
Each word is identified to the system and then spoken four times in isolation. These four
repetitions are used to define reference scanning and recognition patterns for the word.

The enrollment strategy consists of preprocessing the data for- each word, locating
reference points, defining scanning patterns, and, finally, defining a recognition pattern. The
preprocessing step uses the algorithm defined in Section Il to provide the spectrum, energy,
regression coefficients, and T-function.

The T-function is a measure of the change in the spectrum, regression coefficients and
energy and for time t is given by:

2
T, =§ : [H(Kjw)N ~ R3NP+ 1€y — Cape_sll®
k-1

-

o ‘ e .
+4 “hju( - E‘j+k»-3”2 '*'4" “hju(dz o Ej+k~4“2]

where
(K])N = normalized amplitude vector (Appendix A)
("j = regression coefficient vector = (¢;;, ¢;,)7
lij = normalized scanning pattern energy.
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Reference points are located in each of the four enrollment words in turn for use in
defining scanning patterns and recognition patterns. The steps in locating the reference points are

as follows:

()]

(2)
Q)

4)
(5)

(6)

(7

(8)

Locate the beginning, igp, and the end, igyp, of the word using an energy
threshold.

Sum the energy in the word segment from igp to ipyp to obtain Sg.

Locate the time points associated with 5, 10, 90, and 95 percent of the energy sum
Si, that is (is, iyg, igg, Igs).

Locate all the T-function peaks in the word segment.

If a T-function peak exists in the interval [igy, ijo), define its location as the first
reference point, RP, : if not, let RP; =is.

If a T-function peak exists in the interval [igg, ipyp ], define it as the last reference
point, RPy ; if not, let RPy = igs.

Generate the set, T, of all T-function peaks in the interval (RP,, RPy). If T is null,
then the word has only the two reference points, RP; and RPy.

If T is not null, use the elements of T in all combinations to maximize the function:

N N 5 ! -

T, e = T
. 1 1
RPy RP,

k=1 s k=2

where i; = RP;; iy = RPy: i €T fork =2..., N — 1; T is the value of the
T-function at iy: T, is a normalization factor; and r is the power for the distance
weighting. The subset of T that maximizes the function F is then used as the set of
reference points for the word, with the first reference point being RP, and the last
being RPy. The objective of the maximization is to distribute the reference points
uniformly throughout the word.

At the location of each of the reference points thus defined, a scanning pattern is defined as
discussed in Section 1ll. The scanning pattern uses the spectrum, energy and regression
coefficients, and their respective differences between time samples.

The definition of the recognition patterns also makes use of the location of the reference
points. The steps in defining the recognition pattern format are as follows:

(1)

2)

3)

R o TSR -

If the energy is greater than a threshold for time samples iRPI - 4, igp — 3, iRP,
- 2, and igp, 1, then extrapolation columns are defined at igp — 4 and igp
-2, ’

If the energy is greater than a threshold for time samples iRPN SR iRPN 2 iRPN
+:, and igp, t+ 4, then extrapolation columns are defined at igp, + 2 and igp,
+ 4,

Interior to every pair of reference points, i and iy ,,, interpolate with M columns
for the recognition pattern, where
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2 by —h <4

e 3 4<ik.H - ik. <.10
5 10 <ip,, —i, €20
8 20 <ipyy — iy

The format just described is used to define a recognition pattern using the procedure outlined in
Section II.

Once the reference points, scanning patterns, and recognition pattern have been obtained
for one of the four repetitions of a word as described above, those scanning patterns are used to
scan the remaining three repetitions to automatically find reference points and define reference
patterns. At each repetition, the new scanning and recognition patterns are averaged with the old
patterns. Each of the four repetitions of the word are used in turn to define a set of reference
scanning and recognition points. As each reference pattern is formed, a composite error
consisting of the scanning error and the recognition error is computed. The minimum composite
error over the four different enrollment trials defines the ultimate enroliment for the word.

An example of automatic enrollment is shown in Figure 11 for the word “Two”. For an
energy threshold of 100, the beginning of the word, igy, is at 26 and the end, igyp, is at 66.
The S-, 10-, 90-, and 95-percent energy sum points are at 29, 33, 55, and 58, respectively.
Therefore, the strategy outlined above locates the reference points at 26, 33, and 58. The
recognition format consists of three interpolation points between the reference points at 26 and
33, eight interpolation points between the reference points at 33 and S8, and the extrapolation
beyond the reference point at 58 by two and four points.

C. UPDATING

To accommodate intersession variations and continuous-speech context variation, several
sessions of supervised updating should be performed. The updating should consist of five sessions
separated by at least a day. A series of phrases that contain all the transitions for the 20-word
vocabulary should be spoken continuously. If the phrase is recognized, the reference patterns are
updated by adding 1/16 of the new pattern to 15/16 of the old patterns. The five sessions
spaced at l-day intervals adapts the reference pattern for intersession variations. The series of
phrases with different contexts allows the reference patterns to adapt to continuous speech by
allowing the patterns to “see’” something besides silence between the words and also to account
for coarticulation which occurs in some contexts.

D. APPLICATION TO CONTINUOUS SPEECH

The method of word recognition using spectral pattern matching offers a dramatic
improvement in performance compared with schemes that rely on finding word boundaries with
energy profiles. The spectral pattern-matching method works well in continuous speech provided
the words are enrolled properly and several sessions of continuous speech updating are
accomplished, as discussed in Subsection III.C. The example in Figure 11 of a good enrollment
for the word “two” shows the reference points. In the example, the registration points were
interior to the word, so that the scanning patterns will not be confused with the scanning
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patterns of adjacent words. With several sessions of continuous updating using phrases containing
all the word transitions, the scanning and recognition patterns adapt to ‘‘see” all these
transitions.

Unfortunately, the method of automatic enrollment described above does not always give
a good enrollment. As an example of a poor enrollent, Figure 12 shows the automatic
enrollment for the word “six”. For an energy threshold of 100, the beginning of the word, ig,
is at 25 and the end, ipyp . is at 44, The 5-, 10-, 90-, and 95-percent energy sums are shown at
30, 31, 39, and 41, respectively. The automatic enrollment scheme chose the reference points at
29 and 44. The recognition pattern consists of five columns between the two reference points.
There should have been another reference point at 56 and extrapolation of the recognition
pattern both before the first reference point at 29 and after the last reference point at 56. As
the patterns exist with the automatic enrollment, the updating will not improve the recognition
of the word “5ix”.

It is believed that an improved automatic enrollment algorithm would consist of a set of
speaker-independent reference phoneme patterns. Given the phonetic spelling, the specific
phoneme patterns for the word being enrolled would be scanned across the input data for that
word and scanning errors obtained. The minimum scanning errors would be located and used in a
dynamic programming algorithm to obtain the best sequence of phonemes in the proper spelling
order for the word. T-function peaks between the minimum error locations for the phoneme
pairs would be used to define the reference points for the word. The recognition pattern format
would be specific to the phonemic spelling of the word. Once the reference points and
recognition pattern format are defined, the enrollment procedure would be the same as defined
above.
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SECTION 1V

REFERENCE-PATTERN GENERATION FOR
SPEAKER-INDEPENDENT WORD RECOGNITION

The creation of reference patterns for speaker-dependent, isolated word recognition is
fairly straightforward: extract patterns from a single enrollment session and accommodate
intersession variation through updating of the reference patterns (learning with a teacher). For
speaker-independent word recognition, however, the increased variance of input data from
singe-reference templates because of dialect, idiolect, and actual physical characteristics of the
speaker (length and shape of the vocal tract, pitch, etc.) requires a more complex approach. Of
course, allowing continuous speech input exacerbates the problem with the introduction of
contextual variations. An obvious solution is to allow multiple reference templates for ecach
word. One approach to deriving a set of multiple reference templates from a design data set is to
partition the data set on the basis of information other than the actual data, such as sex or
linguistic background. A second approach, the one used in the total voice verification study and
in the present study, is to partition the data on the basis of the data points themselves using
clustering techniques. The remainder of this section reviews the use of clustering in speaker-
independent reference template generation, discusses the clustering used in the studies at Texas
Instruments, and gives results of some further analysis of the patterns developed during the total
voice work, patterns that were also used on the current unconstrained digit recognition work in
order to preserve compatibility.

A. REVIEW OF CLUSTERING IN SPEAKER-INDEPENDENT WORD RECOGNITION

Except for the work done in this study and in the total voice study,' the only other
applications of clustering to speaker-independent reference-pattern generation has  been
concurrent work started independently about the same time at Bell Laboratories (as reported by
Rabiner, Levinson, Rosenburg, and Wilpon' 22 ) and subsequent independent work done in
Japan by Tanaka.??2* The application at Bell Laboratories is isolated word recognition, and
Tanaka’s procedure has been applied only to the recognition of stop consonants. The remainder
of this subsection reviews these other works.

" L.R. Rabiner, “On Creating Reference Templates for Speaker-Independent Recognition of Isolated Words,™
IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26:34--42, February 1978.

208 E. Levinson et al., “Interactive Clustering Techniques for Selecting Speaker-Independent Reference
Templates for Isolated Word Recognition,” [EEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-27:134--141, April 1979.

2T L.R. Rabiner et al.. “Speaker-Independent Recognition of Isolated Words Using Clustering Techniques,™
Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Washington, D.C.,
574 -577, 24 April, 1979.

22 R. Rabiner and J.G. Wilpon, “Considerations in Applying Clustering Techniques to Speaker-Independent
Word Recognition,”™ Proceedings of the International Conference on Acoustics, Speech and Signal Processing,
Washington, D.C., 578 581, 2-4 April, 1979.

23K, Tanaka, A Standard Category Pattern-Making Method With Application to Phoneme Recognition,”
Proceedings of the Fourth International Joint Conference on Pattern Recognition, Kyoto, Japan, 1030- 1032,
7-10 November, 1978. -

28K, Tanaka, A Talker Clustering Method for Standard Pattern Making,” Progress Report on Speech
Research '77 Electrotechnical Laboratory, Japan, August 1978.
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Although the Bell Laboratories work has been for words said in isolation, the word sets
investigated, while including the digits (0O through 9), were considerably larger. One set was a
54-word vocabulary proposed originally by Gold,?® and the other set contained the alphabet, the
digits, and three control words. The speech representation chosen was a set of linear predictive
coding (LPC) parameters for cach 15-ms frame of speech. These parameters then underwent a
time normalization using a dynamic programming technique.?® The similarity measure used in
the Bell Laboratories work was one of the following form proposed by Itakura:’

_u.v»(k) VT‘Tw(k)
dlk, w(k)] = log (5)

ay \% a

where a, is the vector of LPC coefficients associated with the kzh frame of the test or unknown
utterance X;; a,(, is the vector of LPC coefficients derived from the w(k)th frame of the
reference utterance Xy and V is the matrix of autocorrelation coefficients computed from the
kth frame of the test utterance. Note that this distance measure is not a true metric since it is
not symmetrical.

The clustering technique reported in Levinson et al.,?® and Rabiner et al.?! is a
supervised, interactive procedure and is the combination (figure 13) of the following four
procedures: chainmap, shared nearest neighbor, k-means, and a version of ISODATA. The details
of their procedures are given in Levinson et al.?® In this approach, the investigators first
attempted to find good estimates of both the number of clusters (using the chainmap) and their
cluster centers (using the k-means) for input to an iterative optimization procedure (ISODATA)
that allowed splitting and merging of clusters. The overall intent was to maximize a quality
measure o for the assignment of N observations into M classes. The value of o is given by

| M M
B 5( GQ (j))
MM 1) Z Z i
- ] i=1 =1
O G Sk m, T e (6)
1 1 ’
=t y 5(1 (i) X m)
M Z m.(m, — 1) Z Z N
i=1 R =1 k=1

where superscripts indicate class membership, p subscripts indicate reference-class prototypes, and
6(a,b) is a nonsymmetric similarity measure between patterns a and b that is the average of the
Itakura distances over all the frames of the reference pattern. Further comments regarding o are
made later in this section.

25B. Gold, “Word-Recognition Computer Program,” Massachusetts Institute of Technology, Cambridge. RLF
Technical Report 452, June 1966.

26L.R. Rabiner et al., “Considerations in Dynamic Time Warping Algorithms for Discrete Word Recognition,”
IEEE Transactions on Acoustics, Speech and Sigrial Processing, ASSP-26:575-582, December 1978.
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Figure 13. Bell Laboratories Clustering Procedures (From Rabiner, et al*' )

Speaker-independent recognition results for isolated digits given in Rabiner et al.?! range
from 97.5 to 100 percent. Results for the entire 39-word set range from about 50 to 80 percent,
and recognition improves with the number of reference templates used for each word.

Rabiner and Wilpon?? extended the previous w~rk to unsupervised clustering using the
same data set, distance, and quality measure (o) as previously used. One clustering algorithm uses
only precomputed distances between observations, attempting to place each observation uniquely
in a cluster with all others that are similar, and a second clustering algorithm combines (by
averaging) observations that are similar. Comparisons were made in this work among three
different LPC feature sets and between cluster representation either by the data point with the
minimum maximum distance from all other points in the cluster or by the average of all the
points in the cluster. The results of Rabiner and Wilpon indicate that the algorithm using
precomputed distances was superior to the other and that the use of an averaged pattern to
represent the cluster was superior to using the minimum maximum center. Again, the recognition
accuracy improved with the number of reference templates used.

Tanaka?3,2* clusters a set of observations into different classes by moving each
observation iteratively by some amount proportional to the density of points in the
neighborhood of the observation, where each point is modified by its gradient with respect to all
other points. Specifically, for the set of observation vectors x; (i = 1,..., N) for the jth
iteration,

N
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8(s') = exp - [d(x!, x})12/2s)}
6(2s') = exp % [d(x-L. x'r)lz/l(lsj)}
N
w{” = E 5()
k=1
and

1}

sl 1{3/2
Tanaka makes the analogy to a potential function of an exponential form, so that the (xl'k
X)) 8(2¢)) term can be considered a gradient of the potential function. Hence, the term in
brackets in Equation (7) represents one of the points modified by the gradient of a potential
function of that point with respect to all other points. These modified points are then used in N
weighted sums to determine cach of the new N points for the (j + 1)st iteration. Clustering stops
when the window 6(si) has narrowed sufficiently that every data point is the same as that of the
previous stage. The number of iterations and the final number of clusters are obviously affected
by the choice of ¢ and s°.

This approach is quite similar to that presented by Fukunaga and Hostetler.?” However,
they essentially use the points as modified in the brackets in Equation (7) as the new N points
for the (j + 1)s¢ iteration, instead of using weighted sums of such points.

Tanaka applied this method to generation of reference patterns for use in the difficult
problem of detecting the three stop consonants /p,t,k/. This effort is directed toward a phonetic
classification-based speech recognition system. Tanaka’s results are 89 percent for the test data
and 82 percent for stop consonants of other speakers.

The method used in the study covered by this final report and the method used in the
preceding total voice study differ significantly from the approaches just described. Tanaka’s
approach differs not only in terms of using phonemic-based recognition but also in the clustering
by allowing movement of the data points. Although differing final clusters and numbers of
clusters could be produced in Tanaka’s algorithm by varying the parameters, he does not discuss
how to choose the final clusters. Differing applications do not allow comparison of his final
results to those presented here.

27K Fukunaga and L.D. Hostetler, **The Estimation of the Gradient of CHSIIi Funumn Wuh Applications
in Pattern Recognition,” IEEE Transactions on Information Theory, 1T-21: 2 anuary |

36




| g

Although the application and the clustering approach used at Bell Laboratories differ less,
their approach is to find a single “best” set.of clusters, ultimately using an ISODATA algorithm
that can split and merge clusters. The approach used at Texas Instruments, however, finds good
estimates for cluster centers using a hierarchical clustering approach, performing an iterative
optimization on cluster definitions for several fixed values of M (later referred to as “c”), and
choosing M based not only on criterion values for each of the final partitions, but also on a
subjective evaluation of the final cluster averaged patterns themselves.

A criterion similar to that used by Bell Laboratories (o) is compared with the one used
here (trace of the within-class scatter matrix) later in this section. In addition, although a
common data base could not be used, a small test of recognition performance on isolated digits
was performed to provide a rough comparison with the isolated digit results presented by
Rabiner ct al.?!

B. DETAILED CLUSTERING ALGORITHM

The clustering algorithm used in the total voice study and extended in the present study
represents a unique combination of several methods, all centered on the use of Euclidian
distances because the fast vector comparator exists peripheral to the TI 980 to perform the
computation. The entire procedure is shown in Figure 14. The patterns used in the speaker-
independent digit-recognition evaluations were generated during the total voice study using the
path through the procedure denoted by the double lines in Figure 14. The other paths in Figure
14 were added during this study for evaluation of and consistency checks on the previous
patterns and for rudimentary outlier analysis.

A detailed description of the procedure used to generate the patterns and the patterns
themselves are given in the total voice final report.! A brief description of the procedure is given
here for completeness. The method used in the total voice study to derive the patterns used in
the evaluation was an agglomerative method combining the two clusters that have the smallest
average distance (MINAVE) between the points in the two clusters, i.e., combining the i and j

clusters that have the minimum
1
n;n, § / § [ d(x, x") (8)
'icxi ?’cxj

where

number of X in class x;

=
Il

n; = number of X" in class x;
and, in this case,

d(x,X)

lIx — x'I|?

The second step used was to improve on the partitions from the hierarchical clustering
iteratively by moving samples from one group to another if such a move improved the value of
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some criterion function. This step used the iterative optimization method of Duda and Hart?®
that minimized the sum-of-squared error criterion J,, written as

C C

2 Z :Hi - 12 )
Exi

=1 =1

—
o
it
-
"

where

If a point X is moved from class X; to class X, the means ’nﬁi and _rﬁj change to

T om F
m* =m —— and M* =M + ——
: X n, 1 ] J n, + | a0
The value of Ji decreases to
n, %
Ji* = .li T (X — ﬁl’ill2 (11)
n;
and JJ. increases to
n, =,
J o= i wid
; J o %3 ['x mjll (12)
i
Clearly, then, since the criterion is to minimize Je, if
.n]‘ ~ ni A~
— X -m |2 < —— [IX — m.||? (13)
n, + 1 ! n — 1 :

then X should be transferred from class X; to class x;. Specifically the point X is moved to the
class x;, having the smallest (n;/n; + 1) K- m;lJ2.

An additional property (not necessarily good) of the selection of j, as a criterion is that a
set of cqually divided clusters is favored over a set containing both small and large clusters, as
noted earlier. This can be seen by considering n; > n; in Equation (13), which yields
approximately

n,
J 2 = 3 2
n + I ix mjll <X — ml . (14)

*R.0. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons (New York, 1973).
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Thus, for n; = 1, the distance (X m,»ll’ need only be less than twice the distance |[X — m;l? to

the old mean for X to the transferred to class x;.
C. CRITERIA FOR MEASURING PARTITION GOODNESS

Although minimization of J, was the criterion used in the iterative optimization and (J
Je*1)/J¢ was used as a second criterion to aid in selecting the number of clusters, the values of
several other criteria related to J, were calculated during the current study for all patterns for
numbers of classes from 1 to EN (= 10). (Superscripts on J, are used to denote number of
classes.)

The discussion in the remainder of this subsection assumes a knowledge of scatter
matrices. Appendix B has been provided for those not familiar with the concept.

A third criterion is the value of tr Sy/tr Sy, which is inherently maximized during the
iterative optimization by the minimization of J, (= tr Sy ). Note that since tr Sy = J.' and tr
Sy = tr Sp — tr Sy, then tr Sy/tr Sy = (J.' — JO/JE for ¢ classes.

A fourth related criterion suggested by Hartigan?® for choosing the number of clusters is
(n e Jg Je*t1)/Je. Hartigan suggests that values of this ratio greater than 10 justify
increasing the number of clusters.

A fifth criterion is related to the F-ratio from analysis of variance, taking into account the
degrees of freedom of tr Sy and tr Sy . This criterion is given by

trS;/(c — 1) (m—c)d -1

trSW/(n ¢) (¢ l)Jz 3)

and is attribted by Everitt®® to Calinski and Harabasz.3'

The sixth criterion calculated during this study is a ¢ analogous to that used in the Bell
Laboratories studies.'® ~ 2% The value of ¢ is calculated by

C C
1 in _
' E E lm. — ml?
clc 1) : !
=l

0 = ——— - (16)
; !
1 1 e
E — - E E X — X'N2
¢ (n, 1) | n.
i=1 : 1 Xex; x'(xi
29§ A. Hartigan, Clustering Algorithms, John Wiley and Sons (New York, 1975).
308 Everitt, Cluster Analysis, Heinemann Educational Books, Ltd., (London, 1974).
31T, Calinski and J. Harabasz, **A Dendrite Method for Cluster Analysis,” (unpublished), 1971.
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The relationship between ¢ and the tr Sy/tr Sy criterion can be seen better by putting
both o and criterion S in equivalent forms. The o term can be rewritten as

C C
€ i
S - =112
¢ —. | ZZ c? m; — i

i=1 j=1_7”7_

2 Z" I
- —= J
C (ni 1) *

o (17)

and the fifth criterion multiplied by the factor ¢/(2n) can be rewritten (see Appendix C) as a
seventh criterion «, as follows:

~ - - nn.
—— E E S, w2
(8 )e -1 81 .

e s o

2n(tr S,)/(n — c) g 3
= E ———
I i
¢ - (n l)
c

The values of all seven of these criteria for several classes of one of the 34 pattern types
clustered in this study are shown in Table 5. The desire is to maximize the last five of the seven
criteria discussed above. Note, however, that the sixth criterion, o, is actually only monitored,
while the optimization is on the basis of J,, from which all the other criteria (except o) are

derived.
TABLE 5. VALUES OF SEVEN CLUSTERING CRITERIA FOR
POSTITERATIVE OPTIMIZATION OF MINMAX AGGLOMERATIVE
CLUSTERS FOR RECOGNITION PATTERN FOR DIGIT “SIX”
Criterion
< 1 2 2 ) s 2 7

| 58,412.0 3 0.176 0.000 28.850 0.000 0.000 0.000

2 48,136.5 0.051 0.213 8.296 34.795 0.422 0.208

3 45,686.7 0.055 0.279 8.897 22.561 0.426 0.203

4 43,177.7 0.022 0.353 3473 18.935 0.518 0.227

S 42,2464 0.030 0.383 4.771 15.306 0.530 0.229

6 40,986.8 0.019 0425 2.943 13.520 0.486 0.243

7 40,228.1 0.036 0.452 5.652 11.903 0.546 0.249

8 38,789.0 0.003 0.506 0.543 11.346 0.601 0.272

9 38,6549 0.021 0.511 3.343 9.987 0.601 0.269

10 37,826.5 0.544 9.372 0.633 0.281
|
{
|

'1 4]
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D. DESCRIPTION OF CLUSTER ANALYSIS DOCUMENTATION

This subsection gives a brief description of the printouts available from an analysis
program that was run on the output data from the entire clustering procedure shown in Figure 9
for each of the 34 pattern types. A subsct of the available outputs is presented in Appendix D.
Samples of available printouts are given in this subsection for the scanning pattern for reference-
point 1 for the digit zero. MINAVE is used to refer to agglomerative clustering by combining the
two clusters having the minimum average distance between all points in the two clusters.
Corespondingly, MINMAX refers to agglomerative clustering by combining the two clusters
having the minimum maximum distance between the two clusters.

j Trees

The first type of output available is a tree (dendogram) showing the final joinings or
agglomerations in the hierarchical procedures and is available for all four branches of the
algorithm shown in Figure 9. Accompanying each dendogram is a table showing the values of the
joining criterion for each level and the relationship of the criterion values to the dendogram. The
tree-printing subroutine was adapted from appendix G of Anderberg.3? The tree for the
MINAVE hierarchical clustering using all samples is shown in Figure 15 for the joining criteria
values in Table 6.

. Parameter Comparisons

The second type of output from the analysis program gives the values of the six criteria
described in Subsection IV.C, the values of the errors during the agglomerative clustering, and
the number of iterations required in the iterative optimization to reach the final partitions. The
conditions for each of the parameter comparisons produced and a reference to the figure
showing an example of that comparison are listed below:

N_llNAVE, all points; pre- to postiterative optimization comparison (Figure 16)
MINAVE, outliers discarded; pre- to postiterative comparison (Figure 17)

MINMAX, all points; pre- to postiterative optimization comparison (Figure 18)
MINMAX, outliers discarded; pre- to postiterative comparison (Figure 19)
Preiterative optimization, all points; MINAVE to MINMAX comparison (Figure 20)
Postiterative optimization, all points; MINAVE to MINMAX comparison (Figure 21).

3. Consistency Tests

The class assignments obtained using the MINAVE and the MINMAX hierarchical
clustering procedures after iterative optimization are compared for the number of clusters ranging
from 2 to FN (= 10). This comparison is in terms of two contingency matrices such as shown in
Figure 22 for 10 classes after iterative optimization. This output first lists the members of each
class for the iteratively optimized results of the MINAVE agglomerative clustering followed by
those from the MINMAX agglomerative clustering. The first contingency table then compares the

32M.R. Anderberg, Cluster Analysis for Applications, Academic Press (New York, 1973).




TABLE 6. CRITERION VALUES FOR TREE FOR FINAL 24 STAGES
OF MINAVE AGGLOMERATIVE CLUSTERING OF ALL (166) SCANNING
PATTERNS FOR FIRST REFERENCE POINT OF DIGIT “ZERO”

Class Criterion
Stage | J Absolute Relative
1 16 22 403.692 1
2 % 23 406.000 |
3 2 6 408.710 |
4 7 15 414.500 1
S 10 19 414.750 1
6 9 21 418.000 2
7 1 11 419.967 2
8 9 18 429.875 3
9 13 20 439.000 3
10 2 3 441.115 3
11 4 8 461.250 5
12 14 16 462.714 5
13 1 12 464.742 S
14 1 g, 488.888 7
15 | S 509.195 9
16 1 10 527.124 10
17 4 24 530.000 10
18 1 14 538.098 11
19 4 25 542.947 11
20 1 13 573.328 14
21 1 9 626.332 18
22 1 7 655.048 20
23 4 17 664.150 20
24 1 4 729.398 23

members of the classes from each partition, with each entry in the table showing the number of
points ihat are members of both classes. The second contingency table compares data points in
pairs for joint membership or lack of joint membership in the same class. In particular, if two
data.items are in different classes in a partition, this fact is denoted by a 1 in row or column 1.
Otherwise, a 1 appears in row or column 2. Hence, the (2,2) entry in the contingency table
indicates how many pairs of the N(N — 1)/2 pairs of points are in the same class for both
partitions, and the (1,1) entry indicates how many of the pairs are in different classes for both
partitions.

Ideally, for both contingency tables, all off-diagonal elements will be 0. Hence, a measure
of the closeness of the two partitions in both cases is the sum of the diagonal entries divided by
the sum of all the entries in the table [N for the first table and N(N —1)/2 for the second
table].
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Figure 18. Parameter Comparisons for Pre- and Postiterative

Optimization of MINMAX Partitions Using All Points
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Figure 19. Parameter Comparisons for Pre- and Postiterative
Optimization of MINMAX Partitions With Outliers Discarded
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Figure 20. Parameter Comparisons for Preiterative Optimization

of MINAVE and MINMAX Partitions Using All Points
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STATISTICS FOR DIGIT: 07 REF PT: 17 NO OF DATA PTS: 1loe
MINAVE AND MINMAX AGGLOM CLUSTERING; 23 FEBT9
POST ITERATIVE OPTIMIZATION FOrR MInN JE
NO OF JE(C)=JE(C+1)

C ITERS JE (=TR(w)) /JE (C) TR(B) /TR (W)
AVE MA X AVE MAX AVE MA X AVE MA X
1 0 0 46284.9 46284.9 0,125 0.133 0.000 0,000
e 8 Sy 40504.1 40134.8 0,118 0,110 0.143 0,153
3 80 23 35711.4 35734,2 0,057 0,05 0.296 0.295
4 93 76 33671.6 33736.4 0.061 0,060 0,375 0.372
S 139 84 31628.2 31726.3 0.036 0.044 0,403 0,459
6 124 114 30504.0 30345.3 0,046 0,019 0.917 0.52S8
7 141 44 29106.6 29771.7 0,033 0,047 0.590 0,555
8 96 68 2e8154,.,5 28361.9 0,027 0,038 0,644 (0,632
9 80 60 27385.4 27293.4 0.018 0,029 0.690 0.696
10 75 48 26902.9 2649l . Crrxkaxxknnnnnnx (0,720 0,747

C(N=C)TR(B) (N=C)*DELJE (N=C)*TR(B)

C /2N(C=1)TR (W) BTL'S SIGMA /JE(C) /(C=1)%xTR(A)

AVE MA X AVE MA X AVE MA X AVE MA X

1 0.000 0.000 0.000 0.000 20.358 21.659 0.000 0,000
2 0.139 0.150 0.499 0,305 19.169 17.763% 23,121 24.824
3 0.215 0.215 0.614 0.627 9,196 9,001 23.835 25,768
4 0.241 0.239 0.616 0.633 9,710 9.533 19,979 19.8548
S 0.277 0.275 0.644 0.622 5,652 6.921 18,420 18,241
6 0.295 0.300 0.666 0.663 7.238 2.986 16.348 16,599
7 0.326 0,306 0,702 0.816 S.135 7.435 15,443 14,514
8 0,346 0.339 0.772 0.839 4,262 S5.877 14,3551 14,083
9 0.362 0.365 0,797 0,880 2.731 4,550 13.371 13,4382
10 0.371 0.385 0,864 0,891 »xxwmnsnxwnxkixnx 12,3528 12.785

Figure 21. Parameter Comparisons for Postiterative Optimization
of MINAVE and MINMAX Partitions Using All Points

After all class assignments and contingency tables have been printed, the measure just
described is printed in a summary listing for the partition comparisons both before and after
optimization (Figure 23).

E. OBSERVATIONS ON THE CLUSTERING RESULTS

Since the conclusions to be presented in this subsection have not been proved analytically
but have only been observed from the clustering results, they are presented as observations only.
However, these observations are made on the basis of the results of clustering 34 different
pattern types, which would imply some generality to the observations.

In investigating the properties of various criteria, it is first useful to have a measure of the
distribution of the class size, i.e., whether most of the samples are in one class or whether they
are evenly distributed in all classes. The measure used was a normalized version of the entropy
given by

C

E = (1/EMAX) E ml/ni log; (n,/n) (19)

where
n = E n,
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PRE ITeRATIVE JPTIMIZATION FOx MIN JE

NC 3 e 5 4 S 6 7 -] 9 10
13 Vo440 0,548 0.542 0.536 0.470 0.470 0,.39¢ 0.416 V.434
e: 0.504 0.620 0.618 0.598 0.573 0.540 0,643 0.651 0.676

POST ITERATIVE OPTIVMIZATION FOR MIw JE

NC 3 2 5 4 5 6 7 8 9 10
Ci: 0.633 0.964 0.657 0,795 0.699 0.627 0.635 V.651 0,735
ce: 0e532 0.943 0.736 0.857 0.869 V.87V 0,887 0.899Y 0,937

Figure 23. Contingency Table Measures for Pre- and Postiterative
Optimization Using All Points for Reference Point 1 of Digit 0

and EMAX = log,c. This function is maximum for ¢ equally divided clusters having n; = n/c, and
is minimum for (¢ 1) ni's = 1 clusters having one cluster n; = (n — ¢ — 1)/n.

Observation 1: The first observation is experimental confirmation of the known fact in
cluster analysis that the minimization of J, the sum-of-squared error, favors equal sized clusters,
an example of which is given in Figure B-1. One demonstration of why this is true is given in
Subsection 1V.B. To demonstrate in another way, remember that minimizing J, is equivalent to

maximizing tr Sy, given by
C <
Sp = : m. — m.li?
tr 5y = n ninj]lmi — mjh (20)

&1 =

Consider just one of the terms. Assuming that the means remain relatively constant as points are
changed between class i and class j, it is casy to show that njn; is maximum for n; = n;.

The results of the iterative optimization based on minimizing J, in fact showed that E (the
normalized entropy) increased after the optimization as shown by the histograms of E for the
MINAVE agglomerative clustering in Figure 24 for the 24 scanning patterns (¢ = 2 through 10)
and in Figure 25 for the 10 recognition patterns (¢ = 2 through 10).

Observation 2: MINMAX agglomerative clustering favors equal-sized clusters more than
MINAVE agglomerative clustering. No previous reference to this type of observation could be
found in the clustering literature, although many references existed to the “chaining’” that occurs
in agglomerative clustering when combining the two clusters having the minimum minimum
distance between them.

Figure 26 shows the results as histograms of E for both the MINAVE and the MINMAX
agglomerative clustering (before iterative optimization) for the 24 scanning patterns (¢ = 2

through 10). The results shown in Figure 27 are the same for the recognition patterns.




Observation 1 indicated that lower J.s (and, hence, larger as) result from more equal-sized
clusters, so that two “corollaries™ exist for observation 2. The first is that J, for MINMAX
agglomerative clustering (preiterative optimization) is generally smaller than J, for MINAVE
agglomerative clustering. The second corollary is that, since J, is usually lower for the MINMAX
agglomeration, the number of iterations is also lower for the iterative optimization of the
MINMAX agglomerative clusters. Histograms are not given, but refer to the columns for the
number of iterations given in the 10 tables of postiterative optimization statistics for the 10
recognition patterns in Appendix D.

Observation 3: In spite of quite different starting partitions, the iterative optimization
procedure applied to the MINAVE agglomerative clusters and to the MINMAX agglomerative
clusters yielded similar partitions. A measure of similarity given by the ratio of the sum of the
diagonal entries of a contingency table divided by the sum of all the entries in the table is shown
in Table 7 for both scanning and recognition patterns before iterative optimization and in Table
8 for both pattern types after iterative optimization. These similarity measures are for the first
type of contingency table described in Subsection IV.D.3.

Observation 4: Although o was larger after iterative optimization than before (as it should
be since the optimization criterion is to minimize J., which is equivalent to maximizing ), o
almost always decreased for the optimization using the MINAVE agglomerative beginning parti-
tions and decreased for about half the pattern types for optimization using the MINMAX
agglomerative beginning partitions. Plots of 0, /Gy versus o /. are given in Figure 28
for the MINAVE clustering and in Figure 29 for the MINMAX clustering for scanning patterns.

Two important points should be made. The first point is that the o decrease was much
greater for the MINAVE case than for the MINMAX case because Opre Was much larger for the
former, as can be seen by comparing Figure 30 and Figure 31, which show oy versus o, for
scanning pattterns in both cases. As a matter of interest, Figure 32 shows ¢ versus a for
postoptimization of the MINAVE agglomerative clustering partitions, showing that as the :lusters
approach equal sizes, as happens for the optimization (observation 1), ¢ and « approach the
same value. In fact, for equally divided cluster partitions, ¢ = «, as can be seen from the final
two expressions in Subsection IV.C by setting n; = n; = n/c. The second point to remember is to
temper the conclusions reached about the relationship between ¢ and a by the fact that
optimization is with respect to a (actually J,) while ¢ is being monitored only. Possibly different
conclusions would be reached if iterative optimization were with respect to ¢ with a being
monitored only.

F. TESTING CLUSTER VALIDITY WITH A PRIORI INFORMATION
ABOUT DATA

The problem of testing cluster validity is a subject that has received very little attention in
the literature, probably because of the difficulty of the problem. One of the few references is in
' Duda and Hart,*® who use a hypothesis testing approach to test validity on the basis of the size
! of the reduction in Je. In the specific example given, they assume multivariate normal distribu-
tions and advance the hypothesis that the data are actually from one cluster. They then derive
an expression for testing this hypothesis for J. to a specified significance level.

The approach taken in this section is an entirely different method for testing cluster
validity. In the total voice speaker verification final report,! descriptions of the characteristics of
the reference patterns generated from the clustering algorithm are given in terms of a priori
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Figure 24. Histograms of Normalized Entropy as Measure of Dispersion in
Class Sizes for MINAVE Agglomerative Clustering of Scanning Patterns

information known about the data points making up each class. In this study, a quantitative
measure is used for the same type of comparison. Specifically, it is assumed that a male/female
division of the data is a correct way to separate the data, and then the degree to which the
actual clusters agree with this assumption is measured. Because of the differences in vocal tract
resonances (formants) between males and females, this is a good assumption in most cases
(probably a better assumption than assuming a unimodal distribution for the data). Reference to
the total voice final report, however, reveals cases where the data actually cluster on the basis of
other attributes such as the scanning patterns for the third reference point of “two’ which, since
the formants for /u/ for males and females are very close, splits according to context. This would
suggest extending the technique in this subsection to account quantitatively for multiple attri-
butes. This discussion, however, will consider only the male/female distinction.
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Figure 25. Histograms of Normalized Entropy as Measure of Dispersion in
Class Sizes for MINAVE Agglomerative Clustering of Recognition Patterns

The proposal is that the average information gained by knowing in which class a point falls
should be reduced by the a priori knowledge of an attribute of that point, if the classes represent
that attribute. Alternately stated, the proposal is that the average uncertainty about the class in
which a point falls should be reduced by the amount of certainty gained about the class
membership, knowing the attribute (the sex in this case). From the information theory literature
(e.g., Reza®), the average uncertainty is the entropy, given by*

C

He) = E p(i) log p(i) (21)

B E M. Reza, An Introduction to Information Theory. New York: McGraw-Hiil, 1961.
*All logarithms are taken to base 2.
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Figure 26. Histograms of Normalized Entropy as Measure of Dispersion in
Class Size for Preiterative Optimization of Scanning Patterns
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Figure 27. Histograms of Normalized Entropy as Measure of Dispersion in
Class Sizes for Preiterative Optimization of Recognition Patterns
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TABLE 7. CONTINGENCY TABLE OF THE FIRST KIND*
RESULTS FOR PREITERATIVE OPTIMIZATION

For Scanning Patterns

Ref Contingency Table Ratio for Given Number of Classes
Digit  Point 2 2 4 5 L] ? 8 2 10
0 1 0.440 0.548 0.542 0.536 0.470 0.470 0.392 0416 0.434
0 2 0.663 0.536 0.548 0.373 0.518 0.536 0.524 0.542 0.524
0 3 1.000 0.928 0.934 0.825 0.536 0.500 0.488 0.506 0416
| 1 0815 0.643 0.655 0.756 0.750 0.720 0.744 0.643 0.643
1 2 0.964 0.833 0.661 0.661 0.661 0.524 0.554 0.357 0.369
2 1 0.929 0911 0.702 0.708 0.452 0.470 0.554 0.399 0.399
2 2 0.765 0.756 0.524 0.286 0.500 0.482 0.482 0.583 0.476
2 3 0.613 0.821 0.821 0.714 0.744 0.738 0.732 0.804 0.798
3 1 0.858 0.657 0.639 0.509 0.633 0.609 0.533 0.568 0.586
3 2 0.592 0432 0.438 0.456 0.456 0.604 0.639 0.544 0.533
4 1 0916 0.940 0.725 0.689 0.533 0.533 0401 0.467 0.467
4 2 1.000 0.641 0.641 0.641 0461 0.461 0.551 0.617 0.605
5 | 0.615 0.538 0.544 0.527 0.509 0.669 0.657 0.663 0.675
5 2 0.609 0.396 0.391 0.391 0.556 0.604 0.556 0.651 0.639
6 1 0.970 0.707 0.719 0.551 0.527 0.587 0.611 0.557 0.563
6 2 0.569 0.575 0.389 0.587 0.593 0.581 0.479 0.473 0.533
6 3 0.665 0.563 0.671 0.599 0.539 0.581 0.539 0.551 0.599
7 1 0.994 0.756 0.583 0417 0.429 0.429 0417 0.393 0.399
7 2 0.881 0.821 0.607 0.500 0.518 0435 0.536 0.548 0.548
i 3 0.827 0.536 0.524 0.571 0.494 0.494 0.589 0.565 0.530
8 1 0.798 0.512 0.464 0.494 0.589 0423 0.393 0.446 0.440
8 2 0.583 0.679 0.571 0.601 0.565 0.589 0.417 0417 0.458
9 1 0.515 0.544 0.562 0.373 0.527 0.462 0.485 0.497 0.544
9 2 0.621 0.538 0.538 0.580 0.592 0.621 0.627 0.633 0.716
For Recognition Patterns
Contingency Table Ratio for Given Number of Classes
Digit 2 2 .4 3 . £ L3 3 10
0 0.807 0.578 0.590 0.434 0434 0416 0.440 0.434 0.349
| 0.750 0.607 0.619 0.530 0.435 0.363 0.387 0.375 0.369
2 0.500 0.500 0.482 0.494 0.542 0.536 0.512 0.524 0411
3 0.633 0.556 0.408 0.604 0.544 0.491 0.509 0.456 0.479
4 0.772 0.790 0.790 0.515 0.491 0.491 0.497 0.491 0.497
5 0.858 0.775 0.763 0.728 0.604 0.633 0.633 0.491 0.491
6 0.778 0.707 0.605 0.617 0.593 0.587 0.599 0.587 0.689
7 0.494 0.821 0.750 0.565 0.583 0.583 0.595 0.560 0.583
8 0.554 0.464 0.631 0.619 0.518 0.524 0.548 0.464 0.548
9 0.491 0.538 0.556 0.574 0.396 0.361 0.320 0.408 0.432

*Refer to Subsection IV.D.3.
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Ref
Digit Point

O O ® 00 N NNVl AW WNN NN - — 0O O C
R = M= W = W = N — B — ) o= Wt — ) — Wb —

L . S

1.000
0.940
1.000
1.000
0.988
1.000
1.000
1.000
1.000
1.000

O 00 N VA WN - O

-5

0.633
1.000
1.000
1.000
0.958
0.917
1.000
1.000
0.675
0.988
1.000
1.000
0.675
1.000
1.000
1.000
1.000
1.000
1.000
0.488
1.000
0.952
1.000
0.692

TABLE 8. CONTINGENCY TABLE OF THE FIRST KIND*
RESULTS FOR POSTITERATIVE OPTIMIZATION

3

0964
1.000
0.669
0.857
0815
0.815
1.000
0.696
0.775
0.633
1.000
0.808
0.503
0.964
1.000
0.647
0.467
0.988
0.577
0.988
0.839
0.685
0.781
0.757

3

0.753
0.738
0.964
0.645
0916
0.834
0.982
0929
1.000
0.793

For Scanning Patterns

Contingency Table Ratio for Given Number of Classes

4

0.657
0.723
1.000
1.000
0.554
0.625
0.637
1.000
0.462
0.970
0.856
0.665
0.923
0.959
0.844
0.850
0.689
0.500
0.762
0.982
0.940
0.637
0.680
0.840

5

0.795
0.807
0.614
0.863
0.702
0.708
0.726
0.571
0.799
0.716
0.826
0.665
0.799
0.846
0.707
0.737
1.000
0.929
0.875
0:601
0.685
0.673
0.645
1.000

6

0.699
0.590
0.687
0.631
0.548
0.708
0.857
0.756
0.917
0.686
0.587
0.605
0.893
0.710
0.880
0.814
0.886
0.750
0.964
0.613
0.488
0.679
0.787
0.746

7

0.627
0.596
0.699
0.458
0.708
0.685
0.810
0917
0.663
0.716
0.689
0.641
0.716
0.941
0.850
0.665
0.629
0.601
0.821
0.714
0.470
0.571
0.775
0.716

For Recognition Patterns

8

0.633
0.596
0.633
0.518
0.655
0.655
0.738
0.869
0.568
0.734
0.695
0.719
0.462
0.822
0.665
0.575
0.701
0.720
0.702
0.661
0.607
0.851
0.686
0.799

0.651
0.741
0.669
0.732
0.708
0.571
0.732
0.935
0.663
0.710
0.766
0.743
0.722
0.¢75
0.599
0.713
1.000
0.655
0.607
0.798
0.690
0.714
0.746
0.805

Contingency Table Ratio for Given Number of Classes

4

0.789
0.940
0.79%
0.686
0.491
0.728
0.743
0.726
1.000
1.000

*Refer to Subsection IV.D.3.

5
0.590
0.780
0.851
0.562
0.617
0.817
0.796
0.530
0.958
0.935

6

0.639
0.655
0.708
0.556
0.563
0.609
0.832
0.679
0.839
0.609

7

0.861
0.661
0.744
0515
0.743
0.580

- 0.689

0.554
0.679
0.669

8

0.783
0.792
0.696
0.562
0.587
0.734
0.796
0.714
0.685
0.645

9

0.753
0.827
0.565
0.562
0.563
0.757
0.629
0.655
0.565
0.651

0.735
0.753
0.657
0.827
0.702
0.571
0.714
0.899
0.669
0.704
0.641
0.635
0.586
0.675
0.635
0.713
0.904
0.726
0.667
0.756
0.661
0.690
0917
0.870

0.614
0.685
0.607
0.592
0.647
0.852
0.593
0.601
0.726
0.669
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Figure 31. o Versus a for Preiterative Optimization of
MINMAX Agglomerative Clusters of Scanning Patterns

(**H” is used in this subsection to agree with the information theory literature. The “E” used in
the last subsection is reserved for the normalized entropy, i.e., H/log,c.)

The average information about the class, given knowledge of the sex, is the conditional

entropy:

H(cls) = p(m) E p(ilm) log p(iim) — p(f) E p(ilf) log p(ilf) 22)
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Figure 32. o Versus a for Postiterative Optimization of
MINAVE Agglomerative Clusters of Scanning Patterns
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The average information gained from the clustering is then reduced by the a priori
information represented in the classes, vielding what information theorists term 1 (¢s), the
average of the mutual information between the class and the sex. The value for I(cs) is given by

I(c:s) = H(¢) — H(cls)

(4 ¢

b E p(i) log p(i) + p(m) E p(ijm) log p(ijm) (23)

C

+ p(f) E p(ilf) log p(lf)

i=1
Note that since H(¢) H(cls) = H(s) H(s|c), the term I(c:s) can also be written as:

I(c:s) =  p(m) log p(m)  p(f) log p(f)
(24)

¢

+ E p(i) p(mli) log p(m[i) + E p(i) p(f]i) log p(mli)

=1 i=1

Note also that I(cs) = H(c) for the two-class case when a population with an equal number of
males and females are divided into an all-male class and an all-female class since the class is
uniquely determined by knowing the sex. This corresponds to what is called a “noise-free
channel”™ in information theory. In contrast, when no information is transmitted through a
channel, H(c) = H(cls), yielding I (¢s) = 0, which corresponds to the case of each class having an
equal number of males and females.

However, 1(c:s) is used here as a measure of the “goodness’ of the clustering relative to
the condition (sex in this case) tested. The estimates used for the various probabilities are given
in terms of

n Total number of samples

n; Number of samples in class i
1™ Number of males

n' Number of females

nf" Number of males in class i
n,[ Number of females in class i

The given probabilities are estimated as
pti) = nj/n

m /r n

ptm) =n
p(f) = n'/n
p(ilm) = nf"/n™

p(ilf) = n! /n'

64

SR G o W AN

TABLE 18. MARTIN-HERSCHER DIGIT TEXTS

¢ e e st i




i~

(2 Y

. W,

o e e

oo - S —— v i <o

p(mli) = nj"/n;
ptti) = n:'/nI
Hence, I(e:s) s calculated by

C

l(cis) = E (n;/n) log (n;/n)

i1
+n"/n) E (n*/n™) log (n{"/n™) (25)
i1

¢

+n'/n) E (n}/n") log (n}/n")

Values of 1 are given in Tables 9 through 12 for scanning patterns and in Tables 13
through 16 for recognition patterns, along with another measure, R, the distribution of males
and females among the classes, for the reader with a less esoteric inclination. The value for R is
given by

I

C 1
R = min (n}, n) (26)
n 1 1

i=1

which is a measure of the residue in cach of the classes. The tables in each of the two sets are
arranged by clustering algorithm in the following order: :

(1) MINAVE agglomerative clustering: preiterative optimization

(2)  MINAVE agglomerative clustering; postiterative optimization

(3)  MINMAX agglomerative clustering; preiterative optimization

(4) MINMAX agglomerative clustering; postiterative optimization.
The information in Tables 9 through 12 is summarized in Figure 33 with histograms of 1 for
cach of cases 1 through 4 above. Likewise, the intormation in Tables 13 through 16 is
summarized in Figure 34. It is clear from these two figures that iterative optimization to
minimize Je improves the resulting clusters, assuming the male/female distinction is valid (and
from an acoustic-phonetic standpoint, it is). In addition, these two figures show that MINMAX
agglomerative clustering  yields better clusters before the iterative optimization than does
MINAVE. However. no clear preference results between the MINAVE and MINMAX clusters
after iterative optimization, showing that the iterative optimization algorithm was robust enough
to produce good clusters from cither the MINAVE or MINMAX agglomerative clustering, even
though the starting partition produced from the MINAVE agglomeration was clearly infeiior.
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TABLE 9. MUTUAL INFORMATION AND RESIDUES FOR PREITERATIVE OPTIMIZATION
OF MINAVE AGGLOMERATIVE CLUSTERS OF SCANNING PATTERNS
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TABLE 10. MUTUAL INFORMATION AND RESIDUES FOR POSTITERATIVE OPTIMIZATION

OF MINAVE AGGLOMERATIVE CLUSTERS OF SCANNING PATTERNS
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TABLE 12. MUTUAL INFORMATION AND RESIDUES FOR POSTITERATIVE OPTIMIZATION
OF MINMAX AGGLOMERATIVE CLUSTERS OF SCANNING PATTERNS
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Figure 33. Comparison of Mutual Information for Clustered
Scanning Patterns Using Four Clustering Algorithms
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TABLE 13. MUTUAL INFORMATION AND RESIDUES FOR PREITERATIVE OPTIMIZATION
OF MINAVE AGGLOMERATIVE CLUSTERS OF RECOGNITION PATTERNS
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TABLE 15. MUTUAL INFORMATION AND RESIDUES FOR PREITERATIVE OPTIMIZATION

OF MINMAX AGGLOMERATIVE CLUSTERS OF RECOGNITION PATTERNS
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TABLE 16. MUTUAL INFORMATION AND RESIDUES FOR POSTITERATIVE OPTIMIZATION
OF MINMAX AGGLOMERATIVE CLUSTERS OF RECOGNITION PATTERNS
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TABLE 27. HISTOGRAM OF DIGIT-RECOGNITION PERFORMANCE
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Figure 34. Comparison of Mutual Information for Clustered
Recognition Patterns Using Four Clustering Algorithms
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SECTION V
GENERAL-PURPOSE SPEECH |/0 CAPABILITY

This section describes the methods used in the AP-120B version of the digit recognition
program. Topics covered include the data collection hardware, the filter simulation, the auto-
correlation computation, and a discussion of digitizing and playback utilities.

A. SYSTEM DESCRIPTION

The primary impetus of designing this remote speech 1/O facility was to relieve the host
from the burden of controlling analog-to-digital (A/D) and digital-to-analog (D/A) converters. A
second consideration was to develop a method to get data into an array processor at a high rate
of speed, to allow real-time data collection and processing. Figure 35 is a block diagram of the
resulting speech I/O subsystem.

The configuration consists of a T1 980B host computer, a Floating Point Systems AP-120B
array processor, and a T1 990/10 computer with attached A/D and D/A converters. The 990/10
collects and plays out data under the control of a “mailbox” memory location in the AP-120B.
Therefore, the 990/10 can be controlled by ecither the 980B or the AP-120B. The AP-120B is
used primarily to reduce the quantity of data by transforming the raw speech to a more compact
form (e.g., filtering or preprocessing). In a typical application, the host would request data from
the 990/10, request the AP-120B to process the data, and then request that the results of that
processing be sent to the 980B.

Software directly used in the 1/O subsystem consisted of two parts. The first is the 990/10
software that controls the A/D and D/A, buffers the input and output speech, and controls
speech /O to the AP-120B. The sccond piece of software runs on the 980B and is basically a
device driver for the 990/10. This driver handles the channel protocol as well as all 1/O between
the 980B and the AP-120B. In addition, existing software that digitizes and edits speech data
using the 980B internal A/D and D/A was modified to use the new data acquisition subsystem.

The offloading of the host was carried one step further in the digit-recognition program. In
order to free the host from controlling the 990/10 and AP-120B, the AP-120B was put in charge
of this entire process. Since the AP-120B has direct memory access (DMA) capability to the

A/D
98oB [ AP 1208 990/10
HOST L—-O[iRRAY PROCESSOR COMPUTER|

D/A

Figure 35. Speech Channel Block Diagram
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host. the host need only tell the AP-120B where to place the processed data and when to begin
collection. This scheme allows continuous input of speech, since host activity is totally disjointed
from the data collection or processing. With all this computational burden removed from the
host, it can casily keep pace with real-time processing.

B. FILTER SIMULATION IN THE AP-120B

The first process initiated on the input speech data is a recursive filter simulation. The
center frequencies and bandwidths of this simulation are designed to match those of the
hardware filters specified in Subsection 1LA and Appendix A. The filter model included both
preemphasis and envelope shaping to match the hardware filters. These 106 filters were typically
sampled every 10 milliseconds. This filter simulation accounts for approximately 60 percent of
real time when data are collected at an 80-microsecond sample rate.

The output of the filter simulator is then preprocessed, and the output of the preprocessor
is sent to the 980B host memory. The preprocessing is the same as that described in Appendix
A.

C. VOICING DECISION FROM THE AP-120B AUTOCORRELATION
PITCH TRACKER

An estimate of voicing was included in this speech input subsystem by performing an
autocorrelation on the input speech. This consisted of sliding a window of speech over previous
speech. Given a frame of speech data consisting of N samples, the last M samples of the frame,
W, are used as a sliding window for a reverse correlation. The normalized cross-correlation,
R,(K), between the sliding window, W, and the M speech samples earlier in time starting at the

(M — K, )th sample is used for this reverse correlation; i.e.,
M
E XM-m+1HXM - -m-K+1)
1
R, (K) = e (28)
M M ,
E X2M- - -m+1) E X2M-m--K+1)
m=1 m=1
(Kmin <K< Km;n\)

The maximum value of the R (K)s is then selected as the voicing indicator. An [R (K) .. | less
than about 0.6 indicates an unvoiced frame, while an R (K) . | approaching 1 indicates a
strongly voiced frame. The value of K for the R (K),,, was not used, although it corresponds
to the value of the pitch period in samples. Typical values used in these calculations are:

M

N = 125 (125 samples at 80 microseconds = 10 milliseconds)
K

375 (375 samples at 80 microseconds = 30 milliseconds)

min = 25 (25 samples at 80 microseconds = 2 milliseconds)

Kpax = 250 (250 samples at 80 microseconds = 20 milliseconds)
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SECTION VI
EXPERIMENTAL RESULTS

A. SPEAKER-INDEPENDENT DIGIT RECOGNITION
1. Data Sets

A wide variety of digit-recognition testing was done using two types of data sets. The most
heavily used data set was the total-voice evaluation data set. This test data set was part of a data
base collected in a sound booth over a 3-month period at Texas Instruments. The test data set
was extracted from around the middle of this 3-month period, to avoid the initial microphone
fright of the subjects, and consisted of one repetition of one of 10 possible sets of 10 six-digit
sequences uttered by 106 subjects (64 males, 42 females). The actual sequences used in this data
collection are shown in Table 17. The test data were digitized, edited, and preprocessed during
the total voice contract to ensure the precise replicability of the test data. However, since thesc
“test” data were used for multiple experiments to evaluate the effect of parameter variations, the
validity of the absolute recognition results is not assured. In addition, the data were also
idealized by editing, which avoids spurious false recognition of background noises as true data.
For these reasons, further experiments were performed on a second data base.

The second data base used is a subset of a large digit-recognition data base currently being
collected in the speech community. The data being collected use sequences devised by Martin
and Herscher, modified to include both the “oh” and the “zero” pronunciations of the digit
zero. The texts being used in these data collections are shown in Table 18. All the multiple-digit
sequences are supposed to be said in a continuous manner, although not all subjects always
complied.

2. Digit-Recognition Results for Six-Digit Sequences

A total of 29 evaluation runs were made on the 1,060 six-digit sequences from the total
voice evaluation data set. The overall digit recognition rates and conditions for all runs are given
in Table 19. Even though no syntactic constraints (except length) were applied during the digit
recognition, the total voice evaluation data set used was compatible with the design data since
the following digit pairs, all nasal-to-vowel, glide or semivowel (or vice versa) transitions, were
disallowed in both data sets:

01 -8 2-9 3-9 4-9 91
08 2-1 3-1 4-1 71 9-8
09 2-8 3-8 4-8 7-8

The first of these evaluation runs (no. 45), was the syntactically unconstrained digit
recognition for the final evaluation for the total voice study. A detailed description of the
thresholds and parameters for the evaluation runs is given in the total voice final report. The
values of most of these parameters remained unchanged during this current study, except as
noted in this section. These parameters are listed below along with the values used for run no.
45:

i)




TABLE 17. THE 10 SETS OF 10 SIX-DIGIT
SEQUENCES USED IN TESTING

057342 072358 027683 068513 061934
124063 145867 176840 165327 159034
273069 237945 243057 261754 253760
358206 361907 361745 346810 368405
451960 458973 468153 457063 430752
546207 510264 510426 520463 517943
612703 613270 675904 654372 675823
720364 724513 724351 759403 794302
T— 869512 879045 879630 853706 852734
945703 946513 932750 942607 926034
035162 026954 047658 057423 026873
152374 162573 162735 142760 132057
206457 265903 269305 234768 234687
347620 367514 345172 345687 345768
453076 463275 423579 403685 403251
540276 570369 516890 576804 547602
658793 694583 694230 619473 651942
759403 758946 740258 750619 790234
851762 869350 861023 851924 879630
974581 951672 968027 968450 95817¢C

Reference-point location parameters

Peak-to-valley ratio (PVR) = 1.10

Maximum valley point error (Max VPE) = 615
OPTSEQ (valley point sequencing parameters)

dt limits (dt,, . dt,) |

Expected dt (df)

see Table 11 of total voice final report!

Minimum expected dt (used to determine dt* for the denominator in the
point-pair error calculation:

dt* = max (dt, (ﬁmin) o

Time deviation weighting (8) = 2
Floor of valley point error (OFFSET) = 100
Hypothesized digit parameters
) = 150

Weighting of sequence crror (SQ) contribution to total normalized error for
digit k (wy) = 0.1

Minimum absolute average energy across recognition pattern (EN_ ;.
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TABLE 18. MARTIN-HERSCHER DIGIT TEXTS

2 4 1
2

Isolated Digits

9 6
9 6

7 ZERO 3 S 8 OH
4 1 7 ZERO 3 5 8 OH

Five-Digit Codes
(Pronounce ““0” as ZERO.)

08175 10260 55806
67438 44953 32146
29091 60733 68630
91625 81754 79241
(Pronounce “0” as OH.)
08175 10260 55806
29091 60733 68630
Three-Digit Codes
(Pronounce “0” as ZERO.)
(1) 525 (11) 990 (21) 631 (31) 005 (41) 033
(2) 759 (12) 583 (22) 349 (32) 149 (42) 477
(3) 101 (13) 171 (23) 565 (33) 819 (43) 680
(4) 626 (14) 098 (24) 113 (34) 974 (44) 306
(5) 202 (15) 232 (25) 460 (35) 357 (45) 915
(6) 727 (16) 670 (26) 892 (36) 212 (46) 782
(7) 366 (17) 854 (27) 964 (37) 551 (47) 248
(8) 044 (18) 386 (28) 076 (38) 161 (48) 887
9) 843 (19) 795 (29) 228 (39) 453 (49) 939
(10) 418 (20) 429 (30) 737 (40) 508 (50) 694
(Pronounce “0” as OH.)
101 990 460 005 033
202 098 076 140 680
044 670 508 306

Normalizers to account for expected recognition error for digit k
(TE, )—values given later in this section.

Maximum allowable total normalized error for digit k (NE; ):

gt 0 ] 2 3 4 5 6 7 8 9
NEL 1286097 123 110 116 113 110 109 107 114
19
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45

46

48

49

50

51

53

54

55

56

57
58

59
60
61

63

64

Run No.

Percent
Correct
Recognition

90.5

90.0

89.4
899

90.0

90.3

89.3

91.8

91.9

923

93.8

93.3

94.1

94.1

93.5
93.4
94.1

94.2

94.1

91.9

TABLE 19. SYNOPSIS OF EVALUATION RESULTS

Remarks (Changes From Previous Runs)

Baseline (TVBISS final parameters):
Multiple reference patterns; minimum energy = 150;
0.1 percent NE thresholds; PVR = 1.1; maximum
valley point error = 615: sequence length unconstrained.

Same as run no. 45 except new tree-searching subroutine (DECIDE)
used with minimum separation = 3 centiseconds; maximum separation
= 80 centiseconds.

Same as run no. 46 except sequence length constrained to 6.

Same as run no. 47 except maximum separation = 120 centiseconds
and minimum energy = minimum [150, 0.1 (maximum energy of
all hypothesized digits)] .

Same as run no. 48 except PVR = 1.05 (for this run only).

Same as run no. 48 except point-pair error between reference points
1 and 3 added.

Same as run no. 50 except minimum energy = minimum [150, 0.2
(maximum energy of all hypothesized digits)] .

Same as run no. 50 except total normalized error (NE) for 3 reference-
point words multiplied by 0.9 (longer words are, in general, more
reliably recognized).

Same as run no. 52 except minimum energy = minimum {150, 0.15
(maximum energy of all hypothesized digits)] .

Same as run no. 53 except sequence length unconstrained (for this
run only).

Same as run no. 53 except 3-bit quantized T-function added to
scanning patterns and maximum valley-point error = 860.

Same as run no. 55 except OFFSET in SQ eliminated (for this
run only).

Same as run no. 55 except SQ thresholds = 2,000/1,000.

Same as run no. 55 except maximum valley-point error = 700 and
SQ thresholds = (800, 330, 860, 400, 340, 400, 820, 700, 420, 430)
for digits O through 9, respectively.

Same as run no. 58 except difference data in scanning patterns eliminated.
Same as run no. 59 except middle column of scanning patterns eliminated.

Same as run no. 58 except with minor bug in subroutine DECIDE
corrected.

Same as run no. 61 except with minor adjustments to the TE
normalizing constants to account for TE changes due to T-function
inclusion.

Same as run no. 61 except with minor changes to the quantization levels
for T-function (for this run only).

Same as run no. 62 except T-function quantized to 16 levels maximum
valley-point error = 1,100; PVR = 1.05; SQ thresholds = 2,000/1,000.
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TABLE 19. SYNOPSIS OF EVALUATION RESULTS (Continued)

Percent
Correct
Run No. Recognition Remarks (Changes From Previous Runs)
65 94.9 Same as run no. 62 except TE normalizers modified to account for
confusion-matrix entries from run no. 62.
66,67 953 -« %
68 95.2 ‘
t 69 953 Same as run no. 62 except TE normalizers modified to account for
- il confusion-matrix entries from previous run.
70-72 95.2 ‘
73 953  J
The following additional parameters were introduced for the syntactically unconstrained
digit sequence recognition algorithm added during the current contract.

Minimum (3-centisecond) and maximum (120 centisecond) interdigit times (times
between first reference point of one word and last reference point of previous
word)

Minimum acceptable ratio of average recognition pattern energy for each word to
maximum average recognition pattern energy for all words = 0.15.

Note from table 19 that poorer results were obtained in experiments that eliminated either the
floor (OFFSET) to the valley-point error (run no. 56) or the difference data from the scanning
patterns (run no. 59).

The digit recognition results for each digit for selected evaluation results are shown in
Table 20. The evaluation run results shown are only those exhibiting significant improvements
over previous runs. These improvements occurred for run no. 52 because the total normalized
error was lowered for three reference-point words, for run no. 55 because the T-function (see
Section LB for definition) quantized to 3 bits was included in the scanning patterns, and for
run no. 73 because the normalizers for the recognition error were modified. (Note from Table 19

] that quantizing the T-function to 4 bits in run no. 64 degraded performance.)

The change made for run no. 52 that lowered the total normalized error for longer words
was a heuristic justified only by the fact that longer words (those with more reference points)
are less likely to be spurious hypotheses. This same philosophy was used in the speaker-
dependent recognition. These heuristic normalization constants (HNCs) used were as follows:

No. of reference points ps 3 4 S 6 7
HNC 1.00 090 081 073 0.66 0.59
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TABLE 20. DIGIT RECOGNITION RESULTS FOR
SELECTED EVALUATION RUNS

Evaluation Run Number

_Digit 4 50 s2 35 62 73
0 91.9 91.9 94.3 94.8 95.4 95.4

1 92.6 94.0 929 95.2 93.1 92.4

2 76.7 78.1 88.3 92.7 92.7 94.1

3 89.4 89.3 86.7 89.3 89.2 91.9

4 88.6 88.6 88.2 89.7 90.2 97.2

5 98.5 96.2 96.1 97.6 98.1 95.9

6 95.8 95.2 97.8 98.3 98.3 98.0

7 83.7 84.4 89.9 93.8 94.4 98.0
97.5 96.8 93.3 97.3 98.5 93.8

89.8 89.1 88.0 89.3 91.2 93.7

Overall 90.5 90.3 91.8 93.8 94.2 95.3

The inclusion of the T-function in the scanning pattern was prompted by vowel/nasal
reference points being moved into the nasal rather than being at the phoneme boundary. This
was primarily caused by the inclusion of reference patterns to accommodate nasalized vowels.
Oftentimes, even words having non-nasalized vowel-to-nasal transitions produced lower valley-
point errors matching a portion of the nasalized vowel-to-nasal reference pattern. Since the desire
was to favor choosing reference-point candidates at the locations of T-function peaks in the
input, such a bias could be provided by including an inversely quantized value of the T-function
in conveniently unused 4-bit fields in the scanning pattern for the input (Figure 36). Since the
corresponding 4-bit fields of the reference scanning patterns were zero, the inverse quantization
of the T-function meant that the larger T-function values (lower inversely quantized values) that
usually occur at phoneme boundries would produce lower scanning errors relative to those
produced when the spectral or energy change was not so great during more nearly steady-state
portions of the word. The quantization thresholds given in Table 21 were derived from a
cumulative distribution plot of T-function values at the selected reference points in the digit
recognition design data and at +1 ard +2 time samples around those points.

In addition to the improved recognition performance shown for run no. 55 in Table 20,
the benefit of including the T-function is the scanning pattern can also be seen by the decrease
in the average recognition pattern error, indicating improved time registration of the input
speech. This decrease is shown in Table 22.

The third performance improvement was prompted by the confusion matrix for evaluation
run no. 62 (Table 23). Four quite large nonsymmetrical substitutions are shown in the off-
diagonal entries of the confusion matrix. Since the digits are selected that minimize the
minimum total normalized error across the sequence, adjustment of the relative errors among
digits will affect the distribution of substitutions in the confusion matrix. The mechanism for
performing this adjustment can be seen from the following equation for the total normalized
error for the digit k:

By




68

SRR, i LA KA. - - - -

———— —

NPP

TEy /no. of column in digit k Wi )
NE, = HNCy I sl == PPE; (29)

TEy normalizing constant NPP 4
i=

where HNC is the heuristic normalizing constant, TE is the recognition pattern error, NPP is the
number of reference-point pairs, PPE is the point-pair error between two reference points, and w
is a weighting constant for the sum of the PPEs.

The TE, normalizing constants are calculated from the expected values of TE, as follows:

TEg /no. columns in k
TEy normalizing constant = ~———¢——— —_— (30)

i ~
TO E :‘TE./nO- columns in i)

i=0

Five sets of values for these normalizing constants are given in Table 24, derived from five
different sources:
(1) E, +E+E, from Table 20 of the Speaker Verification III report
(2) Values of J, for the number of reference patterns chosen in the total voice study
for each digit
(3) Values of TE for each of the digits in correct sequences in the 6-digit sequence
evaluation data set for run no. 33

(4) Same as source 3, for run no. 57, which includes the T-function in the scanning
patterns

(5) Values derived from incrementally changing the values from source 4 during run nos.
62 through 73.

Although the normalizing constants derived from source 5 will certainly give somewhat
biased results since they are tuned to the evaluation set, it should be remembered that the test
set is reasonably large (106 speakers). An independent test on the second set of data described in
Subsection VI.A.1 showed that, while not achieving the 19-percent reduction in error rate on the
six-digit sequences between run nos. 62 and 73, a 6-percent reduction in error rate was achieved
using the normalizing constants from source S from that achieved using those from source 3.

The confusion matrix for the final evaluation run on this study (no. 73) is shown in Table
25.

One final observation made on the results of the evaluation runs was the usual problem of
poorer performance for females than for males, as shown both by the overall recognition results
in Table 26 and by the histogram of digit recognition performance (table 27), both from
evaluation run no. 73.

3. Digit-Recognition Results for Three-Digit Sequences

Although the data used for the testing reported in the last subsection were from a large
number of subjects of different ages, races, dialects, and educational backgrounds, the multiple
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TABLE 21. T-FUNCTION QUANTIZATION THRESHOLDS

Quantized Value

N D W — O

Range of T-Function

214 o0
163213
128-162
101127
79100
60-78
40-59
0--39

TABLE 22. DECREASE IN AVERAGE RECOGNITION PATTERN
ERROR BY INCLUDING T-FUNCTION IN SCANNING PATTERNS
AVERAGE RECOGNITION PATTERN ERROR

Run No. 45

Digit (No T-Function)
359.8
440.4
3169
294.3
221.5
431.4
283.3
4234
287.3
444.7

Lo hA W —O

Run No. §7
(3-Bit T-Function)

354.0
409.5
311.3
289.0
218.8
4249
2752
4154
288.3
435.3

TABLE 23. CONFUSION MATRIX FOR DIGIT RECOGNITION
FOR 6-DIGIT SEQUENCES FOR RUN NO. 62

Recognized

1 2 3 4 S 6 7 3 9 X
8 1 10 1 2 3 - 1 3 ——
403 1 12 6 3 S 1 2 2 —
1 581 21 1 - 3 - S el
1 21 657 4 — - - 1 —
13 - 4 644 S g =
3 i 1 2 779 — —— 1 —— 8
4 752 - 5 T 1
7 2 2 - 4 —= 719 1 —_—
3 1 2 -—- 398 - 1

9 1 12 1 2 11 402 1

1 1 3 |
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TABLE 24. RECOGNITION ERROR (TE) NORMALIZING CONSTANTS

Digit

VN nM A W -0

Source 1

1.039
1.170
0.708
1.085
0.853
1.182
0.705
1.052
1.007
1.200

Source 2

1.022
1.089
0.837
1.016
0.719
1.292
0.870
0.945
1.133
1.076

Source 3

0.998
1.225
0.878
1.021
0.681
1.195
0.788
0.977
1.008
1.229

Source 4

1.005
1.163
0.884
1.026
0.691
1.207
0.782
0983
1.024
1.236

Source §

1.020
1.150
0.890
1.020
0.738
1.010
0.730
1.170
0.860
1.330

TABLE 25. CONFUSION MATRIX FOR DIGIT RECOGNITION
FOR 6-DIGIT SEQUENCES FOR RUN NO. 73

3
11
= — 11
589 21
23 678
S 1
7
1
4
10

TABLE 26. DIGIT-RECOGNITION PERFORMANCE

Recognized

4 ]
2 1

12 ———
1 ORI
8 -

691 9

8 763
2 oo,
1 1
2

6 7
3 1
pessir 1
2 2
= 1
1

749 1
== 4]
7 6

OF MALES AND FEMALES

Percent Correct Recognition

Digit

LN NbdbWN=—O

Average

Males

97.8
92.8
94.4
94.0
99.8
97.0
99.1
99.2
94.9
95.5

96.7

86

Females

91.6
91.8
93.6
88.2
93.1

94.1

96.7
96.1

92.4
91.4

93.1
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TABLE 27. HISTOGRAM OF DIGIT-RECOGNITION PERFORMANCE

No. of Percent Number of Number of Number of
Errors Correct Subjects Males Females
0 100 22 19 3
1 98 20 14 6
2 97 21 13 8
3 95 11 6 5
4 93 11 7 4
5 92 4 1 3
6 90 S 0 5
7 88 4 2 2
8 87 3 1 2
9 85 0 0 0

10 83 3 0 3
11 82 0 0 0
12 80 0 0 0
13 78 1 1 0
14 71 0 0 0
15 75 1 0 1
=16 <75 0 0 0

evaluations using these same data made a further independent test mandatory. Results in this
section use the three-digit sequences of the second data base, excluding those with the “oh”
pronunciations. Results in the next subsection are for the digits said in isolation from the same
data base.

Note that, for these 50 sequences, all digits appear an equal number of times and in all
contexts of preceding and following digits. Since the original application of the work done in the
total voice study was for syntactically’ constrained sequences, not all digit pairs were used in the
design data, as described in the previous subsection. Hence, the recognition performance is
expected to be poorer for digits involved in these transitions. This poorer performance does not,
however, reflect on the method developed for choosing reference patterns, but only on the
inadequacy of the design data for unconstrained digit recognition.

The data used in these tests were collected in sound booths or sound-treated rooms at two
locations: Texas Instruments (Dallas, Texas) and the Institute for Advanced Study of the
Communication Process (Gainesville, Florida).

Since the poorer performance of females has been demonstrated in the previous subsection
(as well as in all other word-recognition studies that have been done, to the best of the author’s
knowledge), experiments were performed for male subjects only, 12 from Dallas and 11 from
Gainesville. The recognition performance is shown as the far right column in the confusion
matrix in Table 28. The overall percent correct is 94.0.

It has been noted in these studies that the confusion matrix can be quite speaker-
dependent. Since, in the 3-digit sequence data base, there were more digits (150 versus 60) and
fewer subjects (23 versus 106), the confusion matrix entries are more susceptible to high
substitution rates by particular speakers. For example, 23 of the 48 3-for-2 substitutions shown
in Table 28 were caused by two speakers. However, the two digits with the greatest reduction in
recognition rate (2 and 8) from that given in Table 26 for males are two of the four digits

87




TABLE 28. CONFUSION MATRIX FOR DIGIT RECOGNITION
FOR 3-DIGIT SEQUENCES CONSTRAINED IN LENGTH . .

Recognized Percent

0 1 2 3 4 5 6 7 8 9 X Correct

0 340 1 - —— — = 3 —— 938
| 1 331 2 3 8 ——— 959
2 7 i 287 48 I I 83.2
3 3 3 5 327 : 1 6 . oam
4 1 5 I 330 6 - -~ 1 95.9
§ 5 341 1 3 98.8
6 14 1 1 1 323 3 1 = . 94.0
7 1 1 1 341 1 - - 98.8
8 2 1 29 1 5 /) 294 10 1 85.2
9 11 2 1 : 6 326 1 94.5
X 1 1 = 2 e

having reference points located at the word boundaries. Hence, if the reference scanning patterns
used for locating these points do not explicitly account for all allowable contexts, then these
reference points may be missed during scanning because of the lack of a significantly deep valley
in the scanning error (distance to the reference scanning pattern). In such a case, even though
the time-normalized recognition pattern is much less affected by context, this digit would not
even be hypothesized because of the missing reference point.

Since the percent correct achieved for the 3-digit connected digits was 94.0 using reference
patterns that did not account for all transitions, it is reasonable to assume that the 96.7-percent
correct achieved for males in the 6-digit sequences was minimally, if any at all, caused by tuning
to the test set during the parameter evaluations done on the 6-digit sequence test set. It appears
reasonable that such a recognition rate could be achieved on the unconstrained digit recognition
if the reference scanning pattern set were expanded to include patterns to account for these
transitions. Such patterns could be generated with an expanded design set using the clustering
techniques developed in these studies.

4. Digit Recognition Results for Isolated Digits

A very limited experiment was run to test the digit recognition on isolated digits. The test
involved two samples of each of the 10 digits said in isolation from the same 23 speakers used in
the 3-digit sequence test. In view of the recognition rates achieved on continuous speech, the
recognition rate of the isolated digits was a surprisingly low 95.4 percent, with over one-third of
the errors being caused by 3-for-2 and 5-for-4 substitutions. More expected would be results such
as that achieved by Martin?, whose error rate was approximately halved between his test T-2
(Philadelphia—connected digits) and his test T-3 (Philadelphia—isolated digits).

One possible explanation for the higher-than-expected isolated digit error rate is that the
patterns contained in the reference set to account for contextual variations are generating

spurious hypotheses during isolated word recognition.

The specific confusion matrix for the isolated digits is given in Table 29.

88
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TABLE 29. CONFUSION MATRIX FOR DIGIT RECOGNITION OF ISOLATED DIGITS

Recognized
Percent
0 1 2 3 4 5 6 7 8 9 Correct
0 45 1 97.%
1 45 1 97.%
2 42 4 91.3
3 46 100.0
_'g 4 2 40 4 87.0
s 46 100.0
- 6 1 45 97.8
44 2 95.7
3 43 93.5
9 | - - 2 43 93.5
5. Effect of Spectral Normalization Technique on

Digit-Recognition Performance

Subsequent to the performance tests described previously in this section, investigation of
the high 3-for-2 substitution rate in the 3-digit sequences revealed a mechanism for improving
recognition results and for making them less susceptible to variations in background noise. This
investigation revealed that the valley point error for reference point 1 for the digit 2 (i.e., the
silence/plosive transition) had a higher error for the real-time data than for the digitized data.
This was found to be caused, at least in part, by different “silence” spectra. The differences were
alleviated to some extent by increasing o,,;, in the constant ¢;* used in normalizing the
regressed filter outputs (see discussion in Appendix A):

% =
O = opnstj * 0 min 1)

where Tpost; is the post-regression standard deviation.

The specific effects on the spectrum of changing 0 ,,;, can be seen from the three spectra
shown in Figure 37 for the word two as said by J.S. The increase in the number of hypothesized
digits and the decrease in the total normalized errors for the six digits in the sequences from
which the spectra in Figure 37 were extracted are shown in Table 30. A further breakdown into
the terms that make up the total normalized errors is given in Table 31. Since these tests were
done directly from the analog tape for each trial, exactly repeatable filter outputs are not
obtained. However, general trends can be noted from these tables, such as the over 50-percent
drop in the valley point error for reference point | of the digits 5, 2, and 4, which contain
silence or low energy frication (/f/). An additional point of interest is the consistently lower
recognition errors for the digitized data than for the analog data.

The expected benefits to be derived from using a larger o, are twofold. First, the
normalized spectrum will tend to be more even for silence or low-energy fricatives, making the
resulting patterns more resistant to variations in background noise. Second, since the reference
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Figure 37. Spectra for Digit “Two" for Speaker J.S.
90



Imin
18
37
62
100
150
; 200
L 250
375
Run No. S3
(Opin = 62)

Omin

18
37
62
100
150
200
250
375
Run No. 53

Omin

18
37
62
100
150
200
250
375
Run No. 53

—

Hypothesized

389
346
338
250
324
240
210
212

303

280
336
352
318
300
291
238
274
322

No of

Digits

49
58
52
58
76
70
84
72
2450

161
149
137
124
130
105
111
103
143

272
267
263
255
259
247
252
239
306

SQ

256
216
202
152
190
136
126
122

190

148
153
220
143
125
122
117
108
160

S5
60
54
Sl

S1

40
38
40
47

55
49
44
41
38
39
38
33
38

Normalized Error

2*

63(70)
49(55)
45(51)
45(50)
40(45)
42(47)
41(46)
36(41)
40(45)

FOR SPEAKER 1.8.

335
395
358
346
331
268
260
275
309

SQ

333
392
487
382
359
324
289
287
418

385
265
264
279
181
214
218
191
)

TE

489
468
471
462
488
464
47%
475
432

5

225

200
167
188
165
163
120
219

406
420
374
350
314
306
267
PATE
307

SQ

312
252
214
198
158
164
166
124
200

352
278
320
271
251
238
222
200
241

TE

468
430
389
373
359
368
362
318
343

SQ

448
404
388
356
310
294
252
230
284

442
308
291
259
206
213
181
195
144

TE

306
358
266
329
296
290
276
257
267

7%

TABLE 30. TOTAL NORMALIZED ERROR (NE) FOR DIGITS
FROM SEQUENCE 852734 FOR SPEAKER 1.S.

48(54)
47(53)
50(56)
46(52)
48(54)
45(51)
45(51)
45(50)
44(49)

330
253
261
287
244
271
251
247
261

376
239
193
202
181
189
179
181
304

320
293
268
250
231
231
273
220
253

129
129
114
108
88
92
97
101
133

3

59
64
52
58
52
50
47
43
46

TABLE 31. VALLEY POINT ERRORS, SEQUENCE ERRORS (SQ), AND
RECOGNITION ERRORS (TE) FOR DIGITS FROM SEQUENCE 852-734

SQ

657
474
447
404
326
367
358
313
305

sQ

214
152
122
122
102
108
108
110
182

4

66
57
55
51
46
45
45
44
54

*Since three reference point digits are multiplied by 0.9, the unadjusted errors are
given in parentheses.

TE

418
340
320
328
297
308
298
273
308

TE

336
302
298
278
251
248
244
231
280




patterns used in speaker-independent digit recognition result from averaging patterns from many
speakers, the reference patterns appear more “‘washed-out,” lacking the sharp contrasts found in
speaker-specific patterns. Hence, a flatter spectrum on the input speech resulting from using a
larger o,;, would probably result in a better match to speaker-independent reference patterns.

This hypothesis was tested using a tape generated at RADC (in the computer room
containing speech-processing equipment) consisting of two repetitions cach of two speakers (R.V.
and J.F.) of the 50 three-digit sequences given in Table 18, The recognition results for all four
repetitions are given in Table 32 using both a o, of 62 and a o, of 250. The recognition
results for the larger o, show a small improvement. A performance improvement would
correspondingly be expected on the results presented in the previous subsections since all these

results used data preprocessed using a o, of 62.

TABLE 32. 0,,;, VARIATION PERFORMANCE TEST

Length Constrained Length Unconstrained
Subject Session O min = 62 Omin = 250 Omin = 62 Opmin = 250
J.F. 1 96.0 933 98.0 95.3
JF. 2 95.3 97.3 96.7 96.7
R.V. 1 89.3 90.0 90.0 92.0
R.V. 2 91.3 94.0 92.0 92.0
Overall 92.5 93.7 94.2 94.0

In conclusion, an observation made concerning sequence recognition during the testing of
these two subjects should be noted. In an operational system, where sequences can be repeated,
the only consequence of rejected sequences is a decrease in throughput (assuming a sequence can
finally be accepted if repeated): therefore, rejections should not be used in calculation of the
percent correct recognition rate. The percent correct sequence recognition rate is then given by

¥ no. of correct sequences
70 CORECE =577 = 1 AP s
no. of correct sequences + no. of incorrect sequences

or .
no. of correct sequences

no. of sequences uttered - no. of rejected sequences

% correct

In the case where the length is constrained, the present tree-searching algorithm described
in Section Il chooses the best sequence of the specified length. However, the sequence recog-
nition results for the limited testing given in this subsection indicate that by modifying the
algorithm so that the sequence is accepted only if the Iength of the best sequence is the same as
the specified length, the sequence recognition rate (as defined above) would improve as shown
in the following table:

,
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Best Sequence If Best Sequence

No. of Utterances of Length 3 Is of Length 3
Correct 336 330
Rejected 1 25
Incorrect 57 45
Percent correct 85.5 88.0

B. LIMITED VOCABULARY WORD-RECOGNITION EXPERIMENT

Five speakers from the Speech Research Branch at Texas Instruments were tested on the
limited word-recognition algorithm using an automatic enrollment and a hand enrollment. Each
speaker was recorded onto analog tape while seated in the sound booth. An enrollment session
collected from each speaker consisted of four discrete repetitions of the following words:

Zero Five Minus Hundred
One Six Plus Thousand
Two Seven Point Enter
Three Eight Backup Erase
Four Nine Punch Display

At some time later the same day or the next day, an execution session was collected from each
speaker. The execution session consisted of a set of 20 phrases of three randomly chosen words
and a set of 20 phrases of random lengths (up to seven words) of randomly chosen words. Each
phrase in the execution session was spoken continuously. Two of the speakers had two execution
sessions spaced a half day apart.

The speakers were then enrolled off-line using both automatic enrollment and hand
enrollment. The execution sessions were then tested against these enrollments. The results of the
experiment are given by the confusion matrices of Tables 33 and 34. The left of the matrix
shows what was said and the top of the matrix shows what was recognized. An entry in the “X”
column means nothing was recognized (a deletion). The entries in the matrix are the number of
times a word was recognized versus what was said. A compilation of the results for each
inidividual speaker is given in Table 35. One of the speakers (Keith) had two execution sessions,
and his first execution was used for a supervised updating. The second execution session was
used against the updated reference patterns. The results are given in the last column of Table 35.
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TABLE 35. PERCENT CORRECT SPEAKER-DEPENDENT RECOGNITION
RESULTS FOR CONTINUOUS UTTERANCES FROM A 21-WORD
VOCABULARY ENROLLED ON ISOLATED WORDS

Automatic Hand Updating

Speaker Enrollment Enrollment (Hand)
Gene 77 78

Richard 73 88

Louise 74 87

George 76 94

Keith 66 80 90

96




SECTION VII
CONCLUSIONS AND RECOMMENDATIONS

The three major arcas of rescarch during this study contract were

(1) High-performance, speaker-independent, connected-digit recognition for syntactically
unconstrained digit sequences

(2)  Clustering algorithms for use in the development of sets of reference patterns for
speaker-independent word recognition

(3)  Automatic enrollment for speaker-dependent, connected-word recognition for syn-
tactically unconstrained word sequences.

The program culminated in the installation of the speaker-independent, connected-digit recogni-
tion program on the BISS-ADM speaker verification system at RADC using the total voice
reference patterns for compatibility. In addition, a long-standing hardware failure with the digital
filters on the BISS-ADM system was corrected, resolving performance discrepancies between the
systems at RADC and Texas Instruments.

As part of the three tasks, several developments resulted that are generally applicable to
the speech technology used in this study. The first of these is a modification to the algorithin
for searching the table of hypothesized words (directed graph) that significantly reduces the
processing time. The second development is a technique (transparent to previous programs) for
including a measure of the spectral transitionitivity (T-function) in the scanning patterns for the
purpose of improving the time registration of reference-point locations. The third development is
the capability of digitizing and playing back speech data through A/D and D/A connections to
the fast array processor. This provides the basis for the fourth development, which is simulation
of the digital filters in the array processor, allowing parametric variation of the filter-bank
definition and the consequent ability to perform a variety of tests with data that can be more
precisely replicated using a variety of filter-bank definitions. The new speech channel capability
was also necessary for a fifth development, that of using a quantized autocorrelation value out of
an autocorrelation pitch tracker previously implemented on the array processor to produce a
“soft™ voicing decision for cach frame of filtered speech data for eventual incorporation into the
time-normalized recognition pattern. The sixth general development came as a natural extension
to the capabilities provided by the speech channel and filter simulation. This development is the
programming of the preprocessing function in the array processor and subsequent amalgamation
of digitizing, filtering, and preprocessing in the array processor for inputting preprocessed speech
data to the word-recognition programs. This capability reduces the 980B processing time by
about 35 percent, allowing the word recognition algorithm that uses the new directed-graph
searching algorithm to operate sufficiently fast to allow continuous speech input without having
to discontinue sampling after the input of an utterance.

The speaker-independent, connected-digit recognition portion of this study resulted in a
significantly faster algorithm with a 50-percent decrease in error rate over the course of this
study —from 90.5 percent correct recognition to 95.3 percent on an evaluation data set of ten
6-digit sequences from 106 speakers (64 males, 42 females).

The development of the clustering algorithm resulted in a two-stage, four-path algorithm
with the mechanisms for detecting outlying data points in the design data and with subsequent
analysis routines for comparing the results from the various paths and testing the validity of
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resulting clusters on the basis of comparisons with a priori information about the design data set.
The results of the analysis of the digit-recognition design data set revealed that, although the
clusters selected during the total voice speaker verification contract generally were good parti-
tions of the data, use of partitions resulting from other paths in the more comprehensive
algorithm would have resulted in somewhat more compact clusters in terms of minimizing the
sum-of-squared error.

The research into development of an automatic enrollment technique for speaker-
dependent word recognition resulted in a method that yielded very good results for isolated
word recognition but less acceptable results when used in continuous speech from the same
speaker. The better results achieved with comparable hand enrollments point to the desirability
of a semiautomated enrollment procedure allowing the operator the option of modifying
reference-point locations and recognition-pattern format definitions defined by an automated
front end. Independent of the enrollment method, however, the benefit of reference file
updating as a means of accommodating contextual variability, as well as intersession variability,
became abundantly clear.

Throughout all three phases of this study, the general limitation existed of an insufficient
speech data sample rate and spectral resolution of the filter bank, especially in the higher
frequency bands. This limitation must be removed before any further word recognition develop-
ment. In addition, although all recognition features up to this point have been spectral
amplitudes or direct correlates thereof (regression coefficients and energy), it is time that more
features are used. This, in fact, was the impetus behind the addition of the ‘“‘soft” voicing
decision (quantized autocorrelation coefficient) to the spectral parameters derived during
preprocessing.

Care must be taken, however, that none of the new features added are subject to
measurement errors sufficient to actually degrade performance. In addition to not degrading
overall performance, new features must not degrade performance of the poor speakers while
improving the results for the good speakers.

However, new features such as autocorrelation values or forma values will require
computation capabilities exceeding those of a 16-bit minicomputer. The recommendation for
future word-recognition development is that such research be done with a computing facility that

(1) Is capable of fast arithmetic both for longer word-length integers and for floating-

point numbers

(2) Contains a large (4 to %2 million words) primary storage with virtual memory
capability

(3) Contains an operating system with more programmer-directed features than typically
available on 16-bit minicomputers, allowing more of the time now spent on program
development to be spent on speech algorithm development

(4) Contains a fast array processor capable of performing the filter simulation, linear
predictive coefficient (LPC) computations, formant tracking, autocorrelation
computation, etc., necessary for the extended feature set that is required for further
recognition performance improvement.
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